Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
The action of hydrated lime on the durability of asphalt mixture produced in the half warm mix asphalt technology
Języki publikacji
Abstrakty
Głównym priorytetem w drogownictwie jest zmniejszenie energochłonności wytwarzania mieszanek mineralno-asfaltowych przeznaczonych na górne warstwy konstrukcji nawierzchni. Najbardziej efektywną w tym zakresie jest technologia z wykorzystaniem asfaltu spienianego wodą. Pozwala ona uzyskać lepiszcze spienione wodą, z którego wytwarza się mieszanki mineralno-asfaltowe produkowane w technologii „na półciepło” w temperaturze o 40°C do 60°C mniejszej niż produkcja w tradycyjnej technologii. W badaniach zastosowano beton asfaltowy AC 8S wykonany z asfaltem 50/70. Właściwe parametry spieniania asfaltu 50/70 uzyskano stosując dodatek środka powierzchniowo czynnego. Zastosowano także wapno hydratyzowane jako zamiennik części wypełniacza mineralnego do mieszanki mineralno-asfaltowej. Celem badań było zbadanie trwałości eksploatacyjnej betonu asfaltowego poprzez pomiar właściwości takich jak wytrzymałość na pośrednie rozciąganie w zakresie temperatury od -10°C do +40°C oraz odporność na deformacje trwałe. Wykorzystując funkcję użyteczności Harringtona wyznaczono optymalną zawartość wapna hydratyzowanego i asfaltu spienionego ze względu na wymaganą trwałość betonu asfaltowego. Uzyskany efekt jest konsekwencją synergii wapna hydratyzowanego i asfaltu spienionego w mieszance AC 8S wykonanej w technologii „na półciepło”.
The main priority in road construction is to reduce the energy consumption in the production of mineral-asphalt mixtures used for the upper layers of pavement structures. The most effective technology in this regard is the use of water-foamed bitumen. It allows for the production of water-foamed binders from which asphalt mixtures are made using a “half warm mix” technology at temperatures 40°C to 60°C lower than traditional production. In the research, AC 8S asphalt concrete was used, made with 50/70 bitumen. The proper foaming of bitumen 50/70 were achieved by using a surface active agent. Hydrated lime was also used as a substitute for part of the mineral filler in the asphalt mixture. The aim of the research was to determine the operational durability parameters of asphalt concrete, such as intermediate tensile strength in the temperature range from -10°C to +40°C, and resistance to permanent deformations. Using Harrington’s utility function, the optimal content of hydrated lime and foamed asphalt was determined based on the required durability of asphalt concrete. The obtained effect is a consequence of the synergy between hydrated lime and foamed bitumen in the AC 8S mixture made using the “half warm mix” technology.
Wydawca
Czasopismo
Rocznik
Tom
Strony
344--359
Opis fizyczny
Bibliogr. 35 poz., il., tab.
Twórcy
autor
- Department of Building Engineering Technologies and Organization, Faculty of Civil Engineering and Architecture, Kielce University of Technology, Kielce, Poland
autor
- Department of Building Engineering Technologies and Organization, Faculty of Civil Engineering and Architecture, Kielce University of Technology, Kielce, Poland
autor
- Department of Highway and Environmental Engineering, Faculty of Civil Engineering, University of Žilina, Žilina, Slovakia
Bibliografia
- 1. B. Hofko, M. Dimitrov, O. Schwab, R. Weiss, H. Rechberger, H. Grothe, Technological and environmental performance of temperature-reduced mastic asphalt mixtures. Road Mater. Pavement Des., 18, 22-37 (2017). https://doi.org/10.1080/14680629.2016.1141703.
- 2. E. Sanchez-Alonso, A. Vega-Zamanillo, D. Castro-Fresno, M. Del Rio-Prat, Evaluation of copactability and mechanical properties of bituminous mixes with warm additives. Constr. Build. Mater. 25, 2304-2311, (2011). https://doi.org/10.1016/j.conbuildmat.2010.11.024
- 3. Z. Leng, A. Gamez, I.L. Al-Qadi, Mechanical property characterization of warm-mix asphalt prepared with chemical additives. J. Mater. Civ. Eng. 26, 304-311, (2014). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000810.
- 4. A. Woszuk, W. Franus, A Review of the Application of Zeolite Materials in Warm Mix Asphalt Technologies. Appl. Sci. 7, 293 (2017). https://doi.org/10.3390/app7030293.
- 5. K.J. Jenkins, Mix Design Considerations for Cold and Half-Warm Bituminous Mixes with on Foamed Bitumen. PhD Dissertation, Department of Civil Engineering, Faculty of Engineering, University of Stellenbosch, Stellebosch, South Africa, 2000.
- 6. P.J. Ruckel, S.M. Acott, R.H. Bowering, Foamed-Asphalt Paving Mixtures: Preparation of Design Mixes and Treatment of Test Specimens. In: Asphalt materials, mixtures, construction, moisture effects and sulfur, Washington, DC: TRB – Transportation Research Board, 1982, 911, National Research Council USA, p. 88-95.
- 7. Wirtgen Cold Recycling Technology (1st ed.). 2012. Windhagen: Wirtgen GmbH.
- 8. M.M. Iwański, A. Chomicz-Kowalska, K. Maciejewski, Impact of Additives on the Foamability of a Road Paving Bitumen. IOP Conference Series: Materials Science and Engineering, 2019, Vol. 603, No. 3, pp. 1-10. https://doi.org/10.1088/1757-899X/603/4/042040.
- 9. K.M. Muthen, Foamed Asphalt Mixes. Mix Design Procedure; Contract Report CR 98/077; SABITA Ltd&CSIR Transportek: Pretoria, South Africa, September 2009.
- 10. M.M. Iwański, A. Chomicz-Kowalska, K. Maciejewski, Effect of Surface Active Agent (SAA) on 50/70 Bitumen Foaming Characteristics. Materials. 12, 1-21, 3514, (2019); https://doi.org/10.3390/ma1221351.
- 11. X. Yu, Z. Leng, Z., Y. Wang, S. Lin, Characterization of the effect of foaming water content on the performance of foamed crumb rubber modified asphalt. Constr. Build. Mater. 67, 279-284, (2014). https://doi.org/10.1016/j.conbuildmat.2014.03.046.
- 12. J. Piłat, P. Radziszewski, Nawierzchnie asfaltowe: Podręcznik akademicki. (Asphalt Pavements; Academic handbook). WKiŁ: Warszawa, Poland, 2010. (in Polish).
- 13. P.E. Seebaly, D.N. Litte, D.N., J.A. Epps, The Benefis of Hydrated Lime in Hot Mix Asphalt. The National Lime Association: Arlington, VA, USA. 2006.
- 14. D. Lesueur, J. Petit, H-J. Ritter, The mechanism of hydrated lime modification of asphalt mixtures: a state-of-the-art review. Road Mater. Pavement Des. 14 (1), 1-16, (2012), http://dx.doi.org/10.1080/14680629.2012.743669.
- 15. M. Iwański, A. Chomicz-Kowalska, M. M. Iwański, Influence of hydrated lime on durability of SMA asphalt pavement with quartzite aggregate. Structure and Environmental, 5, 4, 5-14, (2013).
- 16. J. Zou, M. Isola, R. Roque, S. Chun, C. Koh, G. Lopp, Effect of hydrated lime on fracture performance of asphalt mixture. Constr. Build. Mater., 44, 302-308, (2013), http://dx.doi.org/10.1016/j.conbuildmat.2013.03.019.
- 17. M. Iwański, N.B. Uriew, The asphalt concrete as a composite material (with nanodisperse and polymer components). Moscow State Automobile and Road Technical University – Kielce Technical University (Poland). Moscow, Russia, 2007, p. 669.
- 18. D. Lesueur , D.N. Little, Effect on hydrated lime on rheology, fracture and aging of bitumen. Transp. Res. Rec. 1661, 93-105, (1999).
- 19. C. Gorkem, B. Sengoz, Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime. Constr. Build. Mater. 23, 2227-2236 (2009), http://dx.doi.org/10.1016/j.conbuildmat.2008.12.001.
- 20. E. Remišová, M. Decký, M. Podolka, M. Kováč, T. Vondráčková, L. Bartuška; Frost Index from Aspect of Design of Pavement Construction in Slovakia. Procedia Earth Planet. Sci. 2015, 15, 3-10. https://doi.org/10.1016/j.proeps.2015.08.002.
- 21. M. Iwański, G. Mazurek, The effect of hydrated lime on the rheological properties of extracted bitumen from Stone Mastic Asphalt. Cem. Wapno Beton 19, 81, 6, 376-383, (2014).
- 22. M. Iwański, G. Mazurek, Applying of 2S2P1D model for assessing viscoelastic properties of bituminous binder extracted from SMA mixture with hydrated lime addition. Cem. Wapno Beton. 21, 2, 124-136, (2018).
- 23. M.M. Iwański, Effect of Hydrated Lime on Indirect Tensile Stiffness Modulus of Asphalt Concrete Produced in Half-Warm Mix Technology. Materials, 13, 210, 4731, (2020).
- 24. M.M. Iwański, A. Chomicz-Kowalska, K. Maciejewski, Resistance to Moisture Induced Damage of Half Warm Mix Asphalt Concrete with Foamed Bitumen. Materials, 13, 654;1-29, (2020), http://dx.doi.org/10.3390/ma13030654.
- 25. WT-2 2014. Asphalt mixes. Technical Requirements. Appendix to ordinance No. 54 of the General Director of National Roads and Highways, 8.11.2014. 2014.
- 26. Katalog typowych konstrukcji nawierzchni podatnych i półsztywnych, GDDKiA, Poland, Warsaw, 2014, p.112.
- 27. Z. Owsiak, P. Czapik, J. Zapała-Sławeta, Properties of a Three-Component Mineral Road Binder for Deep-Cold Recycling Technology. Materials, 13, 16, 1-13, (2020), https://doi.org/10.3390/ma13163585.
- 28. WT-1 2014. Aggregates Technical Requirements. Aggregates for mineral-asphalt mixtures and surface reinforcements on national roads. Appendix to ordinance No. 46 of the General Director of National Roads and Highways, Poland, Warsaw, 2014.
- 29. Ž.R. Lazić, 2004. Design of experiments in chemical engineering: a practical guide. Wiley-VCH, Weinheim; [Germany].
- 30. D.G. Montgomery, 2001. Design and Analysis of Experiments. John Wiley & Son, 5th Edition, 684.
- 31. STATISTICA 13.3. Statsoft. Available online: www.statsoft.com (accessed on 20 August 2019).
- 32. G.F. Piepel, J.A. Cornell, Mixture Experiment Approaches: Examples, Discussion, and Recommendations. Journal of Quality Technology, 26 (3), 177-196, (1994), https://doi.org/10.1080/00224065.1994.11979525.
- 33. D. Steuer, 1999. Multi-Criteria-Optimisation and Desirability Indices. Technical Report/Universität Dortmund SFB 475, No. 1999/20.
- 34. J. Harrington, The desirability function. Industrial Quality Control, 21 (10), 494-498, (1965).
- 35. K.J. Kim, J. Lin, Simultaneous optimization of mechanical properties of steel by maximizing desirability functions. Applied Statistics, 49 (3), 311-326, (2000).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fed57fbd-1e54-4d1f-947f-f8d3765605a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.