Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Magnetic hysteresis occurs in most electrical engineering devices once soft ferromagnetic materials are exposed to relatively high temperatures. According to several scientific studies, magnetic properties are strongly influenced by temperature. The development of models that can accurately describe the thermal effect on ferromagnetic materials is still an issue that inspires researchers. In this paper, the effect of temperature on magnetic hysteresis for ferromagnetic materials is investigated using a self-developed numerical method based on the Preisach distribution function identification. It employs a parameter depending on both temperature and the Curie temperature. This approach is of the macroscopic phenomenological type, where the variation of the magnetization (in direct connection with the Preisach triangle) is related to the observed macroscopic hysteretic behavior. The isotropic character of the material medium is predominant. The technique relies on a few experimental data extracted from the first magnetization curve provided by metallurgists. The ultimate goal is to provide a simple and robust magnetic behavior modeling tool for designers of electrical devices. Temperature is introduced at the stage of identifying the distribution function of the Preisach model. This method is validated by the agreement between the experimental data and the simulation results. The developed method is very accurate and efficient in modeling the hysteresis of ferromagnetic materials in engineering particularly for systems with ferromagnetic components and electromagnetic-thermal coupling.
Czasopismo
Rocznik
Tom
Strony
297--309
Opis fizyczny
Bibliogr. 20 poz., rys., wz.
Twórcy
autor
- University Hadj Lakhdar Batna 1 Batna, Algeria
Bibliografia
- [1] Chwastek K., Higher order reversal curves in some hysteresis models, Archives of Electrical Engineering, vol. 61, no. 4, pp. 455–470 (2012), DOI: 10.2478/V10171-012-0036-9.
- [2] Szewczyk R., The method of moments in Jiles–Atherton model based magnetostatic modelling of thin layers, Archives of Electrical Engineering, vol. 67, no. 1, pp. 27–35 (2018), DOI: 10.24425/118989.
- [3] Raghunathan A., Melikhov Y., Snyder J.E., Jiles D.C., Theoretical Model of Temperature Dependence of Hysteresis Based on Mean Field Theory, IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 1507–1510 (2010), DOI: 10.1109/TMAG.2010.2045351.
- [4] Preisach F., Über die magnetische Nachwirkung, Zeitschrift für Physik, vol. 94, pp. 277–302 (1935), DOI: 10.1007/BF01349418.
- [5] Sutor A., Rupitsch S.J., Bi N., Lerch R., A modified Preisach hysteresis operator for the modeling of temperature dependent magnetic material behavior, Journal of Applied Physics, vol. 109, no. 7, pp. 1–4 (2011), DOI: 10.1063/1.3562520.
- [6] Bavendiek G., Leuning N., Müller F., Schauerte B., Thul A., Hameyer K., Magnetic anisotropy under arbitrary excitation in finite element models, Archives of Electrical Engineering, vol. 68, no. 2, pp. 455–466 (2019), DOI: 10.24425/aee.2019.128280.
- [7] Sixdenier F., Scorretti R., Numerical model of static hysteresis taking into account temperature, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 68, no. 2, pp. 1–9 (2017), DOI: 10.1002/jnm.2221.
- [8] Chen H., Xu Q., Xiang Y., Huang Y., Temperature characteristics modeling of Preisach theory, MATEC Web of Conferences 139 (2017), DOI: 10.1051/matecconf/201713900077.
- [9] Ould Ouali S.H., Mohellebi H., Chaîbi R., Féliachi M., Introduction de l’effet de la température dans le modèle de Preisach pour la génération des cycles d’hystérésis, Journal de Physique IV France, vol. 124, pp. 315–320 (2005), DOI: 10.1051/jp4:2005124046.
- [10] Mayergoyz I., Mathematical Models of Hysteresis, IEEE Transactions on Magnetics, vol. 22, no. 5, pp. 603–608 (1986), DOI: 10.1109/TMAG.1986.1064347.
- [11] Cardelli E., Fiorucci L., Della Torre E., Identification of the Preisach probability functions for soft magnetic materials, IEEE Transactions on Magnetics, vol. 37, no. 5, pp. 3366–3369 (2001), DOI: 10.1109/20.952615.
- [12] Chelghoum L., Louai F.Z., Nait-said N., A New Approach for Preisach Distribution Function Identification Using Few Experimental Data, Acta Electrotechnica et Informatica, vol. 14, no. 3, pp. 54–60 (2014), DOI: 10.15546/aeei-2014-0030.
- [13] Chelghoum L., Étude des non Linéarités dans les Dispositifs Électriques par la Méthode de Galerkin sans maillages, Doctoral thesis, Faculty of Technology, Batna 2 University, Algeria (2016).
- [14] Lu H.Y., Zhu J.G., Ron Hui S.Y., Measurement and Modeling of Thermal Effects on Magnetic Hysteresis of Soft Ferrites, IEEE Transactions on Magnetics, vol. 43, no. 11, pp. 3952–3960 (2007), DOI: 10.1109/TMAG.2007.904942.
- [15] Zegadi L., Rousseau J.J., Allard B., Tenant P., Renault D., Model of power soft MnZn ferrites, including temperature effects, IEEE Transactions on Magnetics, vol. 36, no. 4, pp. 2022–2032 (2000), DOI: 10.1109/20.875308.
- [16] Ladjimi A., Mékideche M.R., Babouri A., Thermal effects on magnetic hysteresis modeling, Archives of Electrical Engineering, vol. 61, no. 1, pp. 77–84 (2012), DOI: 10.2478/v10171-012-0007-1.
- [17] https://hal.archives-ouvertes.fr/cel-01096612, accessed December 2014.
- [18] Chailloux T.M., Caractérisation et modélisation de matériaux magnétiques en hautes températures en vue d’une application au filtrage CEM, Doctoral thesis, Université Claude Bernard Lyon 1, France (2011).
- [19] Sixdenier F., Raulet M.A., Martin C., Morel L., Chailloux T., Messal O., Hilal A., Caractérisation et modélisation de matériaux et composants magnétiques sous contrainte thermique, Symposium de Génie Électrique (SGE’14): ef-epf-mge 2014, Cachan, France, pp. 1–9 (2014).
- [20] Fiorillo F., Characterization and Measurement of Magnetic Materials, Academic Press (2004)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-feb9809b-aea9-4393-9c77-376ecc636ef9