PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A combined SVM-RDA classifier for protein fold recognition

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Predicting the three-dimensional (3D) structure of a protein is a key problem in molecular biology. It is also an interesting issue for statistical methods recognition. There are many approaches to this problem considering discriminative and generative classifiers. In this paper a classifier combining the well-known support vector machine (SVM) classifier with regularized discriminant analysis (RDA) classifier is presented. It is used on a real world data set. The obtained results are promising improving previously published methods.
Rocznik
Strony
67--70
Opis fizyczny
BIbliogr. 22 poz., tab.
Twórcy
  • Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Kraków, Poland
autor
  • Silesian University of Technology, Institute of Computer Science, Gliwice, Poland
Bibliografia
  • 1. P. Baldi,, S. Brunak,, Y. Chauvin, C. Andersen and H. Nielsen (2000): Assessing the accuracy of prediction algorithms for classification: an overview, Bioinformatics, 16, pp. 412-424.
  • 2. L. Prevost, L. Qudot, A. Moises, Ch. Michel-Sendis, M. Milgram (2005): Hybrid generative/disciminative classifier for unconstrained character recognition, Pattern Recognition Letters 26, pp. 1840-1848.
  • 3. C.-C. Chang. and C.-J. Lin (2001): LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  • 4. C. Chothia (1992): One thousand families for the molecular biologist, Nature 357, pp. 543–544.
  • 5. C.H. Ding and I. Dubchak (2001): Multi-class protein fold recognition using support vector machines and neural networks, Bioinformatics, 17, pp. 349–358.
  • 6. I. Dubchak, I. Muchnik, S.R. Holbrook and S.H. Kim (1995): Prediction of protein folding class using global description of amino acid sequence, Proc. Natl. Acad. Sci. USA, 92, pp. 8700-8704.
  • 7. I. Dubchak, I. Muchnik and S.H. Kim (1997): Protein folding class predictor for SCOP: approach based on global descriptors, Proceedings ISMB
  • 8. L. Lo Conte, B. Ailey, T.J.P. Hubbard, S.E. Brenner., A.G. Murzin and C. Chothia (2000): SCOP: a structural classification of protein database. Nucleic Acids Res., 28, pp. 257-259.
  • 9. H.B. Shen and K.C. Chou (2006): Ensemble classifier for protein fold pattern recognition, Bioinformatics, 22, pp. 1717–1722.
  • 10. V. Vapnik (1995): The Nature of Statistical Learning Theory, Springer, New York.
  • 11. V. Vural and J.G. Dy (2004): A hierarchical method for multi-class support vector machines, Proceedings of the twenty-first ICML, July 04-08, 2004, Banff, Alberta, Canada, p. 105.
  • 12. L. Wang and X. Shen (2006): Multi-category support vector machines, feature selection and solution path, Statistica Sinica 16, pp. 617-633.
  • 13. L. Nanni (2006): A novel ensemble of classifiers for protein fold recognition, Neurocomputing 69, pp. 2434-2437.
  • 14. O. Okun (2004): Protein fold recognition with k-local hyperplane distance nearest neighbor algorithm, In: Proceedings of the Second European Workshop on Data Mining and Text Mining in Bioinformatics, 24 September, Pisa, Italy, pp. 51–57.
  • 15. G. Bologna, R.D. Appel, (2002) A comparison study on protein fold recognition, In: Proceedings of the ninth ICONIP, Singapore, 18–22 November, vol. 5, pp. 2492–2496.
  • 16. N.R. Pal, D. Chakraborty, (2003): Some new features for protein fold recognition, Artificial Neural Networks and Neural Information Processing ICANN/ICONIP, vol. 2714, Turkey, Istanbul, June 26–29, pp. 1176–1183.
  • 17. I.F. Chung, C.-D. Huang, Y.-H. Shen, C.-T. Lin, (2003): Recognition of structure classification of protein folding by NN and SVM hierarchical learning architecture, In: Artificial Neural Networks and Neural Information Processing—ICANN/ICONIP, 26–29 June, Istanbul, Turkey, pp. 1159–1167.
  • 18. U. Hobohm and C. Sander (1994): Enlarged representative set of Proteins. Protein Sci. 3, pp. 522-524.
  • 19. U. Hobohm, M. Scharf, R. Schneider and C. Sander (1992): Selection of a representative set of structures from the Brookhaven Protein Bank Protein Sci., 1, pp. 409-417.
  • 20. K. Stąpor (2005): Automatic classification of objects (in Polish), Academic Publishing House Exit, Warsaw.
  • 21. G.P. Quinn, M.J. Keough (2002) Experimental design and data analysis for biologists. Cambridge University Press.
  • 22. L. Rychlewski, J. Bujnicki, D. Fischer (2003): Protein Fold Recognition and Experimental Structure Determination Chapter in The New Avenues in Bioinformatics Editors: Joseph Seckbach and Eitan Rubin.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-feb8549d-dd3f-4bbf-903f-6d1fd01e5de0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.