PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature Measurement of Modern Cutting Tools During Turning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study presents the influence of the anti-wear coatings and the type of material from which the cutting tools are made of on the cutting temperature occurring on the tool. The cutting tools made of boron nitride and tungsten carbide composite were investigated. The methodology of measuring the cutting temperature using the thermoelement and thermovision techniques was presented. The results of the temperature measurements occurring on the cutting tool in the cutting zone were compared. The paper also presents a method of determining the effective emissivity of the tested tools, necessary for the correct temperature measurement using the non-contact method. The obtained data were interpreted and the relationships described, and then the results obtained were discussed.
Twórcy
  • Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
autor
  • Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
Bibliografia
  • 1. Monka P., Monkova K., Balara M., Hloch S., Rehor J., Andrej A., Somsak M. (2016). Design and experimental study of turning tools with linear cutting edges and comparison to commercial tool, The International Journal and Advanced Manufacturing Technology, 85, 2325–2343. DOI: 10.1007/ s00170–015–8065–3.
  • 2. Aslantas K., Ucun I., Cicek A. (2012). Tool life and wear mechanism of coated and uncoated Al2O3/ TiN mixed ceramic tools in turning hardened alloy steel, Wear, vol. 274–275, 442–451. DOI: 10.1016/j.wear.2011.11.010.
  • 3. Bobzin K. (2017). High-performance coating for cutting tools, CIRP Journal of Manufacturing Science and Technology, 18, 1–9. DOI: 10.1016/j. cirpj.2016.11.004.
  • 4. Cui X., Guo J., Zheng J. (2016). Optimization of geometry parameters for ceramic cutting tools in intermittent turning of hardened steel, Maerials&Design, 92, 424–437. DOI: 10.1016/j. matdes.2015.12.089.
  • 5. Ay H., Yang W.J. (1998). Heat transfer and life of metal cutting tools in turning, International Journal of Heat and Mass Transfer, 41(3), 613–623. DOI: 10.1016/S0017–9310(97)00105–1.
  • 6. Su Y., He N., Li L., Li X.L. (2006). An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V, Wear, 261(7–8), 760–766. DOI: 10.1016/j.wear.2006.01.013.
  • 7. Sebok M., Kucera M., Korenciak D., Gutten M. (2019). Thermal diagnostic systems and their application for analysis of transformer winding. Diagnostyka, 20(2), 49–55, https://doi.org/10.29354/diag/105933.
  • 8. Ueda T., Al Huda M., Yamada K., Nakayuma K., Kudo H. (1999). Temperature Measurement of CBN Tool in Turning of High Hardness Steel, CIRP Annals Manufacturing Technology, 48(1), 63–66. DOI: 10.1016/S0007–8506(07)63132–1.
  • 9. Ghani M.U., Abukhshim N.A., Sheikh M.A. (2008). An investigation of heat partition and tool wear in hard turning of H13 tool steel with CBN cutting tools, The International Journal of Advanced Manufacturing Technology, 39(9), 874–888. DOI: 10.1007/s00170–007–1282–7.
  • 10. Miaa M., Kumar M., Guptabc K., Singhd G., Królczyk G., Pimenovf D.Y. (2018). An aproach to cleaner production for machining hardened steel using different cooling-lubrication conditions, Journal of Cleaner Production, 187, 1069–1081. DOI: 10.1016/j.jclepro.2018.03.279.
  • 11. Miaa M., Dhar N. R. (2018). Effects of duplex jets high-pressure coolant on machining temperature and machinability of Ti-6Al-4V superalloy, Journal of Materials Processing Technology, 252, 688–696. DOI: 10.1016/j.jmatprotec.2017.10.040.
  • 12. Bhatt A., Attia H. (2010). Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718, Tribology International, 43(5–6), 1113–1121. DOI: 10.1016/j.triboint.2009.12.053.
  • 13. Hou J., Zhao N., Zhu S. (2011). Influence of Cutting Speed on Flank Temperature during Face Milling of Magnesium Alloy, Materials and manufacturing processes, 26(8), 1059–1063. DOI: 10.1080/10426914.2010.536927.
  • 14. Almeida F., Amaral M., Oliveira F., Silva R. (2006). Machining behavior of silicon nitride tools coated with micro-, submicro- and nanometric HFCVD diamond crystallite sizes, Diamond and Related Materials, 15(11–12), 2029–2034. DOI: 10.1016/j. diamond.2006.08.006.
  • 15. Wang Y., Lei K., Ruan Y., Dong W. (2016). Microstructure and wear resistance of c-BN/Ni–Cr– Ti composites, International Journal of Refractory Metals and Hard Materials, 54, 98–103, DOI: 10.1016/j.ijrmhm.2015.07.010.
  • 16. Rosinski M., Michalski A. (2012). WCCo/cBN composites produced by pulse plasma sintering method, Journal of Materials Science, 47(20), 7064–7071. DOI: 10.1007/s10853–012–6532-x.
  • 17. Wojciechowski S., Nowakowski Z., Talar R. (2015). Ocena zjawisk fizycznych w procesie toczenia żeliwa sferoidalnego ostrzami z kompozytu WCCo/cBN, Mechanik, 12, 916–919. (in Polish)
  • 18. DOI: 10.17814/mechanik.2015.12.606.
  • 19. Wieczorowski M., Różański L., Gapiński B., Królczyk G.M. (2014). Investigations Regarding the Influence of Surface Topography on Emissive Properties of Material, Aplied Mechanics and Materials, 657, 402–406. DOI: 10.4028/www.scientific.net/AMM.657.402.
  • 20. Majchrowski R., Różański L., Grochalski K. (2015). The Surface 3D parameters to describe the diffuse reflective and emissive properties of selected dielectrics, XXI IMEKO World Congress – full papers, 1268–1271. DOI: 10.21611/qirt.2014.045.
  • 21. Sutter G., Faure L., Molinari A., Ranc N., Pina V. (2003). An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining, International Journal of Machine Tools and Manufacture, 43(7), 671–678. DOI: 10.1016/S0890–6955(03)00037–3.
  • 22. Wałach T. (2008). Emissivity measurements on electronic microcircuits, Measurement, 41, 503–515. DOI: 10.1016/j.measurement.2007.07.001.
  • 23. Majchrowski R., Różański L., Grochalski K. (2017). Apointing of surface topography parameters to describe the diffuse reflective properties of selected dielectrics, Measurement Automation Monitoring – Pomiary Automatyka Kontrola, 63(3), 78–81.
  • 24. Wen C.D., Mudawar I. (2003). Modeling the effects of surface roughness on the emissivity of aluminum alloys, International Journal of Heat and Mass Transfer, 49(23–24), 4279–4289.DOI: 10.1016/j.ijheatmasstransfer.2006.04.037.
  • 25. Sabuga W., Todtenhaupt R. (2001). Effect of roughness on the emissivity of the precious metals silver, gold, palladium, platinum, rhodium, and iridium, High Temperatures-High Pressures, 33(3), 261–269. DOI: 10.1068/htwu371.
  • 26. Huang Z., Zhou W., Tang X., Zhu D., Luo F. (2011). Effects of substrate roughness on infraredemissivity characteristics of Au films deposited on Ni alloy, Thin Solid Films, 519(10), 3100–3106. DOI: 10.1016/j.tsf.2010.12.157.
  • 27. Seifter A., Boboridis K., Obst A.W. (2004). Emissivity Measurements on Metallic Surfaces with Various Degrees of Roughness, A Comparison of Laser Polarimetry and Integrating Sphere Reflectometry, International Journal of Thermophysics, 25(2), 547–560. DOI: 10.1023/B:IJOT.0000028489.81327.b7.
  • 28. Majchrowski R., Grochalski K., Rózański L. (2015). The Design Concept of the Laboratory Heater for Studying the Effect of Surface Topography to Emissivity, Measurement Automation Monitoring, 61(6), 176–179.
  • 29. Zagórniak P., Stachurski W., Ostrowski D. (2016). Application of thermographic measurements for the determination of the impact of selected cutting parameters on the temperature in the workipece during milling process. Strojniški vestnik – Journal of Mechanical Engineering, 62(11), 657–66. DOI:10.5545/sv-jme.2015.3259.
  • 30. Struzinkiewicz G. (2013). Analiza poprawności pomiaru temperatury w strefie skrawania w procesie toczenia stali 4H13, Inżynieria Maszyn, 18(4), 72–85. (in Polish)
  • 31.Jakubek B., Barczewski R., Rukat W., Rozanski L., Wrobel M. (2019). Stabilization of vibro-thermal processes during post-production testing of rolling bearings. Diagnostyka, 20(3), 53–62. DOI: 10.29354/diag/111564.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-feae047d-3cc1-4e52-b2ad-a3ac8850900c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.