PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary research on electrochemical batteries in variable environmental conditions

Autorzy
Identyfikatory
Warianty tytułu
PL
Badania wstępne akumulatorów elektrochemicznych w zmiennych warunkach środowiskowych
Języki publikacji
EN
Abstrakty
EN
The paper presents the preliminary tests of the Valve Regulated Lead-Acid (VRLA) battery in a specific load cycle at different ambient temperatures. The tests were carried out in the environmental chamber. The paper presents the effect of value changes of the ambient temperature at a constant load current on the value of voltage at the battery terminals, the temperature at the terminals as well as the temperature value on the battery body. Based on the tests that were carried out, it was found that the lower the ambient temperature value, the lower the useful capacity of the VRLA battery.
PL
W artykule przedstawione zostały wstępne badania akumulatora VRLA w statycznym cyklu obciążeniowym przy różnych temperaturach otoczenia. Badania przeprowadzone zostały w komorze klimatycznej W pracy przedstawiono wpływ zmiany wartości temperatury otoczenia przy stałej wartości prądu obciążeniowego na wartość napięcia na zaciskach akumulatora, wartość temperatury na zaciskach a także wartość temperatury na obudowie akumulatora. Na podstawie przeprowadzonych badań wykazano, że im niższa jest wartość temperatury otoczenia tym niższa jest wartość pojemności użytecznej akumulatora.
Rocznik
Tom
Strony
55--61
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Institute of Vehicles, Warsaw University of Technology
Bibliografia
  • [1] Krivík P., Vanýsek P. Changes of temperature during pulse charging of lead acid battery cell in a flooded state, Journal of Energy Storage, Vol. 14, pp. 364–371, 2017.
  • [2] Nayaka C. K., Nayakb M. R., Behera R. Simple moving average based capacity optimization for VRLA battery in PV power smoothing application using MCTLBO, Journal of Energy Storage, Vol. 17, pp. 20–28, 2018.
  • [3] Kujundzic G., Ileš Š., Matuško J., Vašak M. Optimal charging of valve-regulated lead-acid batteries based on model predictive control, Applied Energy, Vol. 187, pp. 189–202, 2017.
  • [4] Fairweather A.J., Foster M.P., Stone D.A. Modelling of VRLA batteries over operational temperature range using Pseudo Random Binary Sequences, Journal of Power Sources, Vol. 207, pp. 56–59, 2012.
  • [5] Maya G. J., Davidson A., Monahov B. Lead batteries for utility energy storage: A review, Journal of Energy Storage, Vol. 15, pp.145–157, 2018.
  • [6] Belmokhtara K., Ibrahima H., Fégera Z., Ghandour M. Charge Equalization Systems for Serial Valve Regulated Lead-Acid (VRLA) Connected Batteries in Hybrid Power Systems Applications Energy Procedia, Vol. 99, pp. 277–284, 2016.
  • [7] Franke M., Kowal J. Empirical sulfation model for valve-regulated lead-acid batteries under cycling operation, Journal of Power Sources, Vol. 380, pp. 76–82, 2018.
  • [8] May G.J., Calasanzio D., Aliberti R. VRLA automotive batteries for stop&go and dual battery systems, Journal of Power Sources, Vol. 144, pp. 411–417, 2005.
  • [9] Kouchachvili L., Yaïci W., Entchev E. Hybrid battery/supercapacitor energy storage system for the electric vehicles, Journal of Power Sources, Vol. 374, pp. 237–248, 2018.
  • [10] Sanz-Gorrachategui I., Bernal C., Oyarbide E., Garayalde E., Aizpuru I., Canales J. M., Bono-Nuez A. New battery model considering thermal transport and partial charge stationary effects in photovoltaic off-grid applications, Journal of Power Sources, Vol. 378, pp. 311–321, 2018.
  • [11] Shahriari M., Farrokhi M. Online State-of-Health Estimation of VRLA Batteries Using State of Charge, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 60, NO. 1, pp. 191-202, 2013.
  • [12] Liu Y., Meng Y., Lu Z., Gao X. Z. An Incremental Updating Method for Online Monitoring State-of-Health of VRLA Batteries, 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 978-1-5386-1829-5/17/$31.00 c 2017 IEEE.
  • [13] Chmielewski A., Bogdziński K., Gumiński R., Szulim P., Piórkowski P., Możaryn J., Mączak J., Operational research of VRLA battery, Springer, Advances in Intelligent Systems and Computing, AUTOMATION 2018, Vol. 743, pp. 783–791, 2018.
  • [14] Możaryn J., Chmielewski A., Selected Parameters Prediction of Energy Storage System Using Recurrent Neural Networks, 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, SAFEPROCESS 2018, IFAC-PapersOnLine, Elsevier, (2018) [In print]
  • [15] Chmielewski A., Piórkowski P., Bogdziński K., Szulim P., Gumiński R., Test bench and model research of hybrid energy storage, Journal of Power Technologies, No. 5, Vol. 97, pp. 406-415, 2017.
  • [16] Chmielewski A., Gumiński R., Bogdziński K., Mydłowski T., Mączak J., Możaryn J., Piórkowski P., Selected properties of the hybrid micro–installation model based on electrochemical battery and PV module, International Journal of Structural Stability and Dynamics, 2018 [In print]
  • [17] Chmielewski A., Gontarz S., Gumiński R., Mączak J., Szulim P. Badania elektrochemicznych magazynów energii (Research on electrochemical energy stores), Przegląd Elektrotechniczny, No. 10, pp. 231-234, 2016.
  • [18] Chmielewski A., Mączak J., Szulim P. Experimental research of electrochemical energy storage, International Conference Automation 2017, 15-17 march Warsaw, Springer, Advances in Intelligent Systems and Computing, Vol. 550, pp. 227-235, 2017.
  • [19] Chmielewski A., Mączak J., Szulim P. Experimental research and simulation model of electrochemical energy stores, Automation 2017, 15-17 march Warsaw, Springer, Advances in Intelligent Systems and Computing, Vol. 550, pp. 236-246, 2017.
  • [20] Chmielewski A., Gontarz S., Szulim P. Modelowo-wsparte badania elektrochemicznych magazynów energii (Model-based research on electrochemical energy storage systems), Rynek Energii, Nr 5, Vol. 126, pp. 37-45, 2016.
  • [21] Xianshu W., Xiongwen Z., Youhao L., Qiming H., Lidan X., Mengqing X., Weishan L. Maintaining structural integrity of 4.5 V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive, Journal of Power Sources, Vol. 338, pp.108-116, 2017.
  • [22] Maheshwari A., Dumitrescu M. A., Destro M., Santarelli M. A modelling approach to understand charge discharge differences in thermal behavior in lithium iron phosphate–graphite battery, Electrochimica Acta, Vol. 243, pp. 129–141, 2017.
  • [23] Gracia I., Youcef H.B., Judez X., Oteo U, Zhang H., Li C., Lide M. Rodriguez-Martinez, Armand M., S-containing copolymer as cathode material in poly(ethylene oxide)-Based all-solid-state Li-S batteries, Journal of Power Sources, Vol. 390, pp. 148–152, 2018.
  • [24] Taegong R., Arunkumar R. et al. Mechanochemical synthesis of silica-lithium manganese oxide composite for the efficient recovery of lithium ions from seawater, Solid State Ionics, Vol. 308, pp. 77–83, 2017.
  • [25] Zhang L., Zhang S., Zhou Q., Snyder K., Miller T. Electrolytic solvent effects on the gassing behavior in LCO||LTO batteries, Electrochimica Acta, Vol. 274, pp. 170-176, 2018.
  • [26] Pourabdollah K. Development of electrolyte inhibitors in nickel cadmium batteries, Chemical Engineering Science, Vol. 160, pp. 304–312, 2017.
  • [27] Tirronen T., Sukhomlinov D., O'Brien H., Taskinen P., Lundstrom M. Distributions of lithium-ion and nickel-metal hydride battery elements in copper converting, Journal of Cleaner Production, Vol 168, pp. 399-409, 2017.
  • [28] Zubi G., Dufo-López R., Carvalho M., Pasaoglu G. The lithium-ion battery: State of the art and future perspectives, Renewable and Sustainable Energy Reviews, Vol. 89, pp. 292–308, 2018.
  • [29] Chmielewski A., Piórkowski P., Gumiński R., Bogdziński K., Model-based research on ultracapacitors, Springer, Advances in Intelligent Systems and Computing, AUTOMATION 2018, Vol. 743, pp. 254–264, 2018.
  • [30] Chmielewski A., Możaryn J., Piórkowski P., Gumiński R., Bogdziński K., Modelling of Ultracapacitors using Recurrent Artificial Neural Network, Springer, Advances in Intelligent Systems and Computing, AUTOMATION 2018, Vol. 743, pp. 713–723, 2018.
  • [31] Jankowska E., Kopciuch K., Błażejczyk M., Majchrzycki W., Piórkowski P., Chmielewski A., Bogdziński K., Hybrid energy storage based on ultracapacitor and lead acid battery: case study, Springer, Advances in Intelligent Systems and Computing, AUTOMATION 2018, Vol. 743, pp. 339–349, 2018.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-feacabc5-235c-4be6-a1e3-a8dbabbb7095
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.