PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of carbon footprint from spark ignition power facilities by the dual approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Power generation units, suitable for individual users and small scale applications, are mainly based on spark ignition engines. In recently performed research, reductions of emissions coming from such units, especially considering carbon dioxide emissions, are deemed as the issue of particular importance. One of solutions, postponed to reduce impact of spark ignition engine-based units on the natural environment, is transition from fossil fuels into renewable gaseous fuels, as products of organic digestion. Nonetheless, development of new solutions is required to prevent further carbon dioxide emissions. The paper presents a novel dual approach developed to reduce carbon dioxide emissions from stationary power units, basing on spark ignition engine. The discussed approach includes both reduction in carbon content in the fuel, which is realized by its enrichment with hydrogen produced using the solar energy-supported electrolysis process, as well as application of post-combustion carbon dioxide separation. Results of the performed analysis suggest profitability of transition from fossil into the hydrogen-enriched fuel mixture, with significant rise in operational parameters of the system following increase in the hydrogen content. Nevertheless, utilization of the carbon dioxide separation leads to vital soar in internal energy demand, causing vital loss in operational and economical parameters of the analyzed system.
Rocznik
Strony
171--192
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Akademicka 2A, 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Akademicka 2A, 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Akademicka 2A, 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Akademicka 2A, 44-100 Gliwice, Poland
Bibliografia
  • [1] da Costa R.B.R. et al.: Experimental investigatiion on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant emission analysis. Appl. Energ. 261(2020), 114438.
  • [2] Ayad S.M.M.E. et al.: Analysis of performance parameters of an ethanol fueled spark ignition engine operating with hydrogen enrichment. Int. J. Hydrogen Energ.45(2020), 8, 5588–5606.
  • [3] Chłopek Z.: Ecological aspects of using bioethanol fuel to power combustion engines. Eksploatacja i Niezawodność – Maint. Rel. 35(2007), 3, 65–69.
  • [4] Kotowicz J., Wecel D., Jurczyk M.: Analysis of component operation in Power to Gas to Power operation. Appl. Energ. 216(2018), 45–59.
  • [5] Kotowicz J., Jurczyk M.: Economic analysis of an installation producing hydrogen through water electrolysis. J. Power Technol. 99(2019), 3, 170–175.
  • [6] Guandalini G., Robinius M., Grube T. Campanari S., Stolten D.: Long-term power-to-gas potential from wind and solar power: A country analysis for Italy. Int. J. Hydrogen Energ. 42(2017), 19, 13389–13406.
  • [7] Pawananont K., Leephakpreeda T.: Feasibility analysis of power generation from landfill gas by using internal combustion engine, organic Rankine cycle and Stirling engine of pilot experiments in Thailand. Energy Proced. 138(2017), 575–579.
  • [8] Leach F., Kalghatgi G., Stone R., Miles P.: The scope for improving the efficiency and environmental impact of internal combustion engines. Transport. Eng. 1, (2020), 100005.
  • [9] Ortiz-Imedio R. et al.: Comparative performance of coke oven gas, hydrogen and methane in a spark ignition engine. Int. J. Hydrogen Energ. 13(2020), 33, 17572–17586.
  • [10] Lee J. et al.: Effect of different excess air ratio values and spark advance timing on combustion and emission characteristics of hydrogen-fueled spark ignition engine. Int. J. Hydrogen Energ. 44(2019), 45 25021–25030.
  • [11] Zhu H., Duan J.: Research on emission characteristics of hydrogen fuel internal combustion engine based on more detailed mechanism. Int. J. Hydrogen Energ. 44(2019), 11, 5592–5598.
  • [12] Dobslaw D., Engesser K.-H., Stork H., Gerl T.: Low-cost process for emission abatement of biogas internal combustion engines. J. Clean. Prod. 227(2019), 1079– 1092.
  • [13] Gahleitner G.: Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. Int. J. Hydrogen Energ. 38(2013), 5, 2039–2061.
  • [14] Irimescu A., Vasiu G., Tordai G.T.: Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control. Appl. Energ. 121(2014): 196–206.
  • [15] Balakheli M.M. et al.: Analysis of different arrangements of combined cooling, heating and power systems with internal combustion engine from energy, economic and environmental viewpoints. Energ. Convers. Manage. 203(2019), 112–253.
  • [16] Sheykhi M. et al.: Performance investigation of a combined heat and power system with internal and external combustion engines. Energ. Convers. Manage. 185(2019), 291–303.
  • [17] Arbabi P., Abbassi Abbas, Mansoori Z., Seyfi M.: Joint numerical-technical analysis and economical evaluation of applying small internal combustion engines in combined heat and power (CHP). Appl. Therm. Eng. 113(2017), 694–704.
  • [18] Wu J., Wang J.: Distributed Biomass Gasification Power generation system Based on Concentrated Solar Radiation. Energy Proced. 158(2019), 204–209.
  • [19] Perkins G.: Techno-economic comparison of the levelised cost of electricity generation from solar PV and battery storage with solar PV and combustion of bio-crude using fast pyrolysis of biomass. Energ. Convers. Manage. 171(2018), 1573–1588.
  • [20] Gossler H., Drost S., Porras S., Shiessl R., Maas U., Deutschmann O.: The internal combustion engine as a CO2 reformer. Combust. Flame 207(2019), 186–195.
  • [21] Bova S., Castiglione T., Piccione R., Pizzonia F.: A dynamic nucleate-boiling model for CO2 reduction in internal combustion engines. Appl. Energ. 143(2015), 271–282.
  • [22] Cho J., Song S.: Prediction of hydrogen-added combustion process in T-GDI engine using artificial neural network. App. Therm. Eng. 181(2020), 115974.
  • [23] Zhu H., Zhang Y., Liu F., Wei W.: Effect of excess hydrogen on hydrogen fueled internal combustion engine under full load. Int. J. Hydrogen Energ. 45(2020), 39, 20419–20425.
  • [24] Shulga R.N., Putilova I.V., Smirnova T.S., Ivanova N.S.: Safe and wastefree technologies using hydrogen electric power generation. Int. J. Hydrogen Energ. 45(2020), 58, 34037–34047.
  • [25] Escobar-Jimenez R.F., Cervantes-Bobadilla M., Garcia-Morales J., Gomez Aguilar J.F., Hernandez Perez J.A., Alvarez-Gallegos A.: Short communication: The effects of not controlling the hydrogen supplied to an internal combustion engine. Int. J. Hydrogen Energ. 45(2020), 29, 14991–14996.
  • [26] Duraiswamy K., Chellappa A., Smith G., Liu Y., Li M.: Development of a highefficiency hydrogen generator for fuel cells for distributed power generation. Int. J. Hydrogen Energ. 35(2010), 17, 8962–8969.
  • [27] Kotowicz J., Jurczyk M., Wecel D.: Analysis of hydrogn generator operation in alkali environment. Rynek Energii 3(2019), 60–66 (in Polish).
  • [28] Nikolic M. V., Tasic G.S., Maksic A.D., Saponjic D.P., Miulovic S.M., Kaninski M.P.M.: Raising efficiency of hydrogen generation from alkaline water electrolysis – Energy saving. Int. J. Hydrogen Energ. 35(2010), 22, 12369–12373.
  • [29] Gibson T.L., Kelly N.A.: Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices. Int. J. Hydrogen Energ. 35(2010), 3, 900–911.
  • [30] Wecel D., Ogulewicz W.: Study on the possibility of use of photovoltaic cells for the supply of electrolysers. Arch. Thermodyn. 32(2011), 4, 33–53.
  • [31] Stanovsky P. et al.: Flue gas purification with membranes based on the polymer of intrinsic microporosity PIM-TMN-Trip. Sep. Purif. Technol. 242(2020), 116814.
  • [32] Wiciak G.: The influence of the moisture content in gaseous CO2/N2 mixture on selected parameters of CO2 separation in a capillary polymeric membrane. Desalin. Water Treat. 128(2018), 314–323.
  • [33] Jaschik M., Tańczyk M., Jaschik J., Janusz-Cygan A.: The performance of a hybrid VSA-membrane process for the capture of CO2 from flue gas. Int. J. Greenh. Gas Con. 97(2020), 103037.
  • [34] Olivieri L. et al.: The effect of humidity on the CO2/N2 separation performance of copolymers based on hard polyimide segments and soft polymer chains: Experimental and modeling. Green Energy Env. 1(2016), 3, 201–210.
  • [35] Lasseuguette E., Carta M., Brandani S., Ferrari M.-C.: Effect of humidity and flue gas impurities on CO2 permeation of a polymer of intrinsic microporosity for post-combustion capture. Int. J. Greenh. Gas Con. 50(2016), 93–99.
  • [36] Theiler A., Karpenko-Jereb L.: Modelling of the mechanical durability of constrained Nafion membrane under humidity cycling. Int. J. Hydrogen Energ. 40(2015), 9773–9782.
  • [37] Nikolaeva D. et al.: The performance of affordable and stable cellulose-based polyionic membranes in CO2/N2 and CO2/CH4 gas separation. J. Membrane. Sci. 564(2018), 552–561.
  • [38] Ansaloni L. et al.: Influence of water vapor on the gas permeabiliy of polymeric ionic liquid membranes. J. Membrane. Sci.487(2015), 199–208.
  • [39] Cuddihy J., Beyerlein S., White T., Cordon D.: MATLAB Modeling of an IC Engine as a Capstone Learning Experience in a Combustion Engines Course. SAE Techn. Pap. 2016-01-0173, 2016.
  • 40] Beyerlein S.: MatLAB Engine Code: YZ250 Engine Model. https://www.webpages.uidaho.edu/mindworks/ic_engines.htm (accessed 27 May 2020).
  • [41] INNIO: Jenbacher type 2. Product datasheet, 2019. https://www.innio.com/images/medias/files/161/innio_br_t2_update_a4_en_2019_screen_ijb-119002-en.pdf (accessed 27 May 2020).
  • [42] Rutkowski K.: Analysis of the efficiency and composition of biogas in a 1MW biogas power plant. Inżynieria Rolnicza 131(2011), 173–178 (in Polish).
  • [43] Safety Data Sheet. Natural gas in transmission and distribution lines. PGNiG SA, Warsaw 2010 (in Polish).
  • [44] Burton N.A., Padilla R.V., Rose A., Habibullah H.: Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew. Sust. Energ. Rev. 135 (2021), 110255
  • [45] Kotowicz J., Jurczyk M., Wecel D., Ogulewicz W.: Analysis of hydrogen production in alkaline electrolyzers. J. Power Technol. 96(2016), 3, 149–156.
  • [46] Psiloglou B.E., Kambezidis H.D., Kaskaoutis D.G., Karagiannis D., Polo J.M.: Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece. Renew. Energ. 146(2020), 1372–1391.
  • [47] Kaplani E., Kaplanis S., Mondal S.: A spatiotemporal universal model for the prediction of the global solar radiation based on Fourier series and the site altitude. Renew. Energ. 126(2018), 933–942.
  • [48] Dondariya C., Porwal D., Awasthi A., Shukla A.K., Sudhakar K. Murali Manohar S.R., Amit B.: Performance simulation of grid-connected rooftop solar PV system for small households: A case study of Ujjain, India. Energ. Rep. 4(2018), 546–553.
  • [49] Characteristics of Konin municipal heat energy enterprize (in Polish). https://www.mpec.konin.pl/index.php/charakterystyka-systemu.html (accessed 25 June 2020).
  • [50] Information from the President of ERO (No. 22/2020) on the average selling price of electricity on the competitive market for 2019. Energy Regulatory Office, Warsaw, 30.03.2020 (in Polish). https://www.ure.gov.pl/pl/urzad/informacjeogolne/komunikaty-prezesa-ure/8794,Informacja-nr-222020.html (accessed 25 June 2020).
  • [51] EES – Enginering Ecuation Solver. F-Chart Software. http://fchartsoftware.com/ees/ (accessed 15 May 2020).
  • [52] MathWorks. https://www.mathworks.com/products/new_products/previous_release_overview.html (accessed 27 May 2020).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe9e4d1d-959f-42ee-a70d-5342fde7efd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.