Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The paper aims to produce aluminium welds in the solid state with good specifications and the least amount of welding defects by using the friction stir welding method (FSW) and different tool pin profiles and welding parameters. The research investigated the mechanical characteristics and microstructure of a friction stir welded dissimilar aluminium alloy (2024-T3 to 7075-0) through thickness produced by varying welding settings and three different FSW tool pin shapes. Design/methodology/approach: The objective is to obtain the welds with the least amount of welding defects in the solid state by using the friction stir welding method (FSW), designing the tool pin profiles, and changing the rotation speeds. Findings: According to tensile strength and micro-hardness tests, tool rotation of 2000 rpm and square pin profile were the best compared to other working parameters. The greatest hardness and highest tensile strength of FSWed dissimilar aluminium joints have been 144 HV and 215 MPa, respectively, when using the square pin profile at a tool rotation speed of 2000 rpm. The hardness and tensile strength of FSWed dissimilar aluminium alloy joints increase with the tool rotation speed. Microstructural observations of the FSWed dissimilar aluminium joints using a square pin profile at the tool rotation speed of 2000 rpm exhibited the weld zone's high weld quality. Additionally, there were no defects in the weld zone. The fracture surface of the FSWed joint indicated a ductile fracture type. Research limitations/implications: With many regions on either side of the weld with varied compositions, microstructures, and characteristics, the resulting welds of dissimilar alloys might result in unsatisfactory weld joints. Practical implications: The weld zone's exceptional weld quality was demonstrated by microstructural investigations of the FSWed dissimilar aluminium connections utilising a square pin profile at a tool rotation speed of 2000 rpm and feed rate of 20 mm per minute. Application in aerospace, shipbuilding and marine, railway, construction, electrical industries, and land transportation. Originality/value: The original value of the paper is the production of welds from dissimilar aluminium alloy (2024-T3 to 7075-0) with the least amount of welding defects by changing the tool pin profiles and tool rotation speeds using the friction stir welding method.
Wydawca
Rocznik
Tom
Strony
14--24
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Department of Mechanical Engineering, University of Diyala, Iraq
autor
- Department of Mechanical Engineering, University of Diyala, Iraq
autor
- Department of Materials Engineering, University of Diyala, Iraq
autor
- Department of Materials Engineering, University of Diyala, Iraq
Bibliografia
- 1. S. Jomah, A.D. Subhi, F.A. Hashim, Effect of friction crush welding parameters on the properties of welded joints of C1020 copper sheet, Journal of Physics: Conference Series 1973/1 (2021) 012048. DOI: https://doi.org/10.1088/1742-6596/1973/1/012048
- 2. H. Mehdi, R.S. Mishra, Mechanical properties and microstructure studies in Friction Stir Welding (FSW) joints of dissimilar alloy – a review, Journal of Achievements of Materials and Manufacturing Engineering 77/1 (2016) 31-40. DOI: https://doi.org/10.5604/17348412.1229666
- 3. H.T. Elmetwally, Y.G. Yakoub, M.N. Elsheikh, A.A. Abd-Eltwab, M.E. Abdullah, Influence of Friction Crush Welding Tool Profiles on The weldability of Commercial Aluminum Tubes, International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) 10/3 (2020) 5579-5588.
- 4. A.S. Jomah, F.A. Hashim, A.D. Subhi, Metallurgical investigation and mechanical properties of dissimilar friction crush welded Cu-Al sheets with flanged edge, Journal of Physics: Conference Series 1973/1 (2021) 012116. DOI: https://doi.org/10.1088/1742-6596/1973/1/012116
- 5. Y.F. Sun, H. Fujii, Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper, Materials Science and Engineering: A 527/26 (2010) 6879-6886. DOI: https://doi.org/10.1016/j.msea.2010.07.030
- 6. A.J.S. Jomah, A.F. Hasanm W. Al Azzawi, Microstructure and Mechanical Properties of Friction Crush Welded 1145 Aluminum Sheets with Flanged Edges, Materials Research 26 (2023) e20220419. DOI: https://doi.org/10.1590/1980-5373-MR-2022-0419
- 7. D.D. Hao, T.H. Tra, Effects of friction stir welding parameters on the mechanical properties of AA7075-T6, Archives of Materials Science and Engineering 77/2 (2016) 58-64. DOI: https://doi.org/10.5604/18972764.1225594
- 8. H. Jamshidi Aval, S. Serajzadeh, A.H. Kokabi, Evolution of microstructures and mechanical properties in similar and dissimilar friction stir welding of AA5086 and AA6061, Materials Science and Engineering: A 528/28 (2011) 8071-8083. DOI: https://doi.org/10.1016/j.msea.2011.07.056
- 9. P.K. Sahu, S. Pal, Influence of metallic foil alloying by FSW process on mechanical properties and metallurgical characterization of AM20 Mg alloy, Materials Science and Engineering: A 684 (2017) 442-455. DOI: https://doi.org/10.1016/j.msea.2016.12.081
- 10. A.M.A. Mohamed, F.H. Samuel, A review on the heat treatment of Al-Si-Cu/Mg casting alloys, in: F. Czerwinski, Heat Treatment-Conventional and Novel Applications, InTech, Rijeka, Croatia, 2012, 55-72. DOI: https://doi.org/10.5772/50282
- 11. N. Kumar, R.S. Mishra, J.A. Baumann, Residual stresses in friction stir welding, Butterworth-Heinemann, Oxford, 2014. DOI: https://doi.org/10.1016/C2013-0-09884-2
- 12. T.B. Korkut, E. Armakan, O. Ozaydin, K. Ozdemir, A. Goren, Design and comparative strength analysis of wheel rims of a lightweight electric vehicle using Al6063 T6 and Al5083 aluminium alloys, Journal of Achievements in Materials and Manufacturing Engineering 99/2 (2020) 57-63. DOI: https://doi.org/10.5604/01.3001.0014.1776
- 13. F.C. Campbell Jr., Manufacturing technology for aerospace structural materials, Elsevier, Oxford, 2011.
- 14. A. Scialpi, L.A.C. de Filippis, P. Cavaliere, Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy, Materials and Design 28/4 (2007) 1124-1129. DOI: https://doi.org/10.1016/j.matdes.2006.01.031
- 15. W. Xu, J. Liu, H. Zhu, L. Fu, Influence of welding parameters and tool pin profile on microstructure and mechanical properties along the thickness in a friction stir welded aluminum alloy, Materials and Design 47 (2013) 599-606. DOI: https://doi.org/10.1016/j.matdes.2012.12.065
- 16. R. Hariharan, R.J. Golden Renjith Nimal, Friction stir welding of dissimilar aluminium alloys (6061&7075) by using computerized numerical control machine, Middle-East Journal of Scientific Research 20/5 (2014) 601-605. DOI: https://doi.org/10.5829/idosi.mejsr.2014.20.05.201
- 17. R. Ranjith, B. Senthil Kumar, Joining of dissimilar aluminium alloys AA2014 T651 and AA6063 T651 by friction stir welding process, WSEAS Transactions on Applied and Theoretical Mechanics 9 (2014) 179-186.
- 18. S. Ravikumar, V.S. Rao, R.V. Pranesh, Effect of process parameters on mechanical properties of friction stir welded dissimilar materials between AA6061-T651 and AA7075-T651 alloys, International Journal of Advanced Mechanical Engineering 4/1 (2014) 101-114.
- 19. A.A. Shehab, S.A. Nawi, A.A.A.G. Al-Rubaiy, Z. Hammoudi, S.A. Hafedh, M.H. Abass, M.S. Alali, S.D. Ali, CO2 laser spot welding of thin sheets AISI 321 austenitic stainless steel, Archives of Materials Science and Engineering 106/2 (2020) 68-77. DOI: https://doi.org/10.5604/01.3001.0014.6974
- 20. S. Kumar, J.K. Katiyar, B.S. Roy, Influence of Tool Tilt Angle on Physical, Thermal, and Mechanical Properties of Friction Stir Welded Al-Cu-Li Alloys, Materials Today Communications 34 (2023) 105348. DOI: https://doi.org/10.1016/j.mtcomm.2023.105348
- 21. S. Kumar, S.K. Chaubey, D. Sethi, S.C. Saha, B.S. Roy, Performance analysis of varying tool pin profile on friction stir welded 2050-T84Al-Cu-Li alloy plates, Journal of Materials Engineering and Performance 31 (2022) 2074-2085. DOI: https://doi.org/10.1007/s11665-021-06315-w
- 22. S. Kumar, J.K. Katiyar, U. Acharya, S.C. Saha, B.S. Roy, Influence of tool rotational speed on Microstructure and Mechanical Properties of Al-Li Alloy using Friction Stir Welding, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 236/5 (2022) 2106-2117. DOI: https://doi.org/10.1177/09544089221080823
- 23. S. Kumar, M.K. Triveni, J.K. Katiyar, T.N. Tiwari, B.S. Roy, Prediction of heat generation effect on force torque and mechanical properties at varying tool rotational speed in friction stir welding using Artificial Neural Network, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 237/19 (2023) 4495-4514. DOI: https://doi.org/10.1177/09544062231155737
- 24. ASM Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Metals Handbook, vol. 2, ASM International, Almere, 1990. DOI: https://doi.org/10.31399/asm.hb.v02.9781627081627
- 25. N. Rajamanickam, V. Balusamy, Effects of Process Parameters on Mechanical Properties of Friction Stir Welds Using Design of Experiments, Indian Journal of Engineering and Materials Sciences 15 (2008) 293-299.
- 26. Q. Zhang, W. Gong, W. Liu, Microstructure and mechanical properties of dissimilar Al–Cu joints by friction stir welding, Transactions of Nonferrous Metals Society of China 25/6 (2015) 1779-1786. DOI: https://doi.org/10.1016/S1003-6326(15)63783-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe9a9109-d130-4236-81f9-d32c83a64dc2