PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the impact of sludge and slag waste on the basic properties of cement mortars

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article examined the influence of two additives, which are post-production waste from metallurgical processes, on the basic properties of cement mortars. Sludge and slag waste were used for testing. Both wastes were examined in terms of their chemical composition using a spectrometer, their specific density and grain composition were determined. As part of the tests, a series of standard mortars were made and the results obtained for modified mortars were compared to them. The produced cement composites used waste in amounts of 5, 10, 15 and 20% of the cement mass, used as a substitute for standard sand. After preparing the standard mortar and mortars containing additives for each series, consistency tests were performed using the flow table method. After an appropriate maturing time, flexural and compression tests were performed for all mortar series after 7 and 28 days of maturing, as well as water absorption tests. The research shows that the addition of these two wastes thickens the fresh cement mortar (from 0.62 to 15 %). The use of such waste also results in a decrease in flexural strength after 7 and 28 days (for sludge from 5 to 21% and for slag from 2 to 11%). However, the compressive strength of mortars decreased by 11% in the case of the addition of 20% of sludge and was almost the same as that of the standard mortar after the addition of 20% of slag.
Wydawca
Rocznik
Strony
130--141
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
  • University of Technology Poland
Bibliografia
  • 1. Adhikary, S.K., Ashish, D.K., Rudžionis, Z., 2021. Expanded glass as light-weight aggregate in concrete – A review, Journal of Cleaner Production, 313, 127848.
  • 2. Ahmad, J., Kontoleon, K.J., Majdi, A., Naqash, M.T., Deifalla, A.F., Ben Kahla, N., Isleem, H.F., Qaidi, S.M.A., 2022. A Comprehensive Review on the Ground Granulated Blast Furnace Slag (GGBS) in Concrete Production, Sustainability, 14, 8783, DOI: 10.3390/su14148783.
  • 3. Alterary, S.S, Marei, N.H., 2021. Fly ash properties, characterization, and applications: A review, Journal of King Saud University - Science, 33, 101536, DOI: 10.1016/j.jksus.2021.101536.
  • 4. Bassam, I. A., Tayeh, A., Alyousef, R., Alabduljabbar, H., Mohamed, A.M., Alaskar, A., 2020. Use of recycled plastic as fine aggregate in cementitious composites: A review, Construction and Building Materials, 253, 119146
  • 5. Bae, S.H., Lee, J.I., Choi, S.J., 2021. Characteristics of Mortars with Blast Furnace Slag Powder and Mixed Fine Aggregates Containing Ferronickel-Slag Aggregate, Materials, 14, 5879. DOI:10.3390/ma14195879.
  • 6. Brachaczek, W., Chleboś, A., Kupczak, M., Spisak, S., Stybak, M., Żyrek, K., 2023. Influence of the Addition of Ground Granulated Blast Furnace Slag, Fly Silica Ash and Limestone on Selected Properties of Cement Mortars. Materials Proceedings, 13, 32, DOI:10.3390/materproc2023013032.
  • 7. Cardoso, W., di Felice, R., Baptista, R.C., Machado, T.A.P., de Sousa Galdino, A.G., 2022. Evaluation of the use of blast furnace slag as an additive in mortars, REM - International Engineering Journal, 75(3), 2022, 215-224.
  • 8. Dębska, B., Krasoń, J., Lichołai, L., 2020. The evaluation of the possible utilization of waste glass in sustainable mortars, Construction of Optimized Energy Potential (CoOEP), 9, 2, 7-15, DOI: 10.17512/bozpe.2020.2.01
  • 9. Fan, W.J., Wang, X.Y., Park, K.B., 2015. Evaluation of the Chemical and Mechanical Properties of Hardening High-Calcium Fly Ash Blended Concrete, Materials, 8(9), 5933-5952.
  • 10. Faraone, N., Tonello, G., Furlani, E., Maschio, S., 2009. Steelmaking slag as aggregate for mortars: effects of particle dimension on compression strength, Chemosphere, 77, 8, 1152-1156.
  • 11. Farinha, C., de Brito J., Veiga, R., 2015. Incorporation of fine sanitary ware aggregates in coating mortars, Construction and Building Materials, 83, 194-206.
  • 12. Gautam, L., Jain, J.K., Kalla P., Choudhary, S., 2021. A review on the utilization of ceramic waste in sustainable construction products, Materials Today, 43, 1884-1891.
  • 13. Huang Q. Zhao, L., 2019. Correlation between compressive strengths and water absorption of fly ash cement mortar immersed in water, Civil Engineering and Architecture, LXV(3), 141-152.
  • 14. Jura, J., 2020. Influence of Type of Biomass Burned on the Properties of Cement Mortar Containing Fly Ash, Construction of Optimized Energy Potential, 9 (1), 77-82.
  • 15. Jura, J., 2023. Influence of Waste Ashes from Biomass Combustion on Frost Resistance of Cement Mortars, Scientific Journals of the Maritime University of Szczecin, nr 75, 147, 35-41.
  • 16. Jura, J., Ulewicz, M., 2021. Assessment of the Possibility of Using Fly Ash from Biomass Combustion for Concrete, Materials, 14, 6708. https://doi.org/10.3390/ma14216708.
  • 17. Kalak, T., Szypura, P., Cierpiszewski R., Ulewicz, M., 2023. Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength, Materials, 16, 4043, DOI: https://doi.org/10.3390/ma16114043
  • 18. Kalinowska-Wichrowska, K., Pawluczuk, E., Bołtryk, M., Jimenez, J.R., Fernandez-Rodriguez, J.M., Suescum Morales, D., 2022. The Performance of Concrete Made with Secondary Products - Recycled Coarse Aggregates, Recycled Cement Mortar, and Fly Ash–Slag Mix, Materials, 15, 1438.
  • 19. Krynke, M., 2021. Management optimizing the costs and duration time of the process in the production system, Production Engineering Archives, 27, 3, 2021, 163-170. DOI: 10.30657/pea.2021.27.21
  • 20. Kurda, R., de Brito, J., Silvestre, J.D., 2017. Combined influence of recycled concrete aggregates and high contents of fly ash on concrete properties, Construction and Building Materials, 157, 554-572.
  • 21. Lee, S.Y., Le, H.V., Kim, D.J., 2019. Self-stress sensing smart concrete containing fine steel slag aggregates and steel fibers under high compressive stress, Construction and Building Materials, 220, 149-160.
  • 22. Lehner, P., Horňáková, M., Pizoń, J., Gołaszewski, J., 2022. Effect of Chemical Admixtures on Mechanical and Degradation Properties of Metallurgical Sludge Waste Concrete, Materials, 15, 8287, DOI: 10.3390/ma15238287.
  • 23. Lis, T., Nowacki, K., 2022. Pro-ecological possibilities of using metallurgical waste in the production of aggregates, Production Engineering Archives, 28, 3, 252-256, DOI:10.30657/pea.2022.28.31.
  • 24. Mohit, J., 2014. Use and Properties of Blast Furnace Slag as a Building Material- A Review, iJES, 2, 54-60; DOI:10.3991/ijes.v2i4.4211.
  • 25. Mohit, M., Sharifi, Y., 2016. Ceramic waste powder as alternative mortar-based cementitious materials, ACI Materials Journal, 116, DOI: 10.14359/51716819.
  • 26. Muradyan, N.G., Arzumanyan, A.A., Kalantaryan, M.A., Vardanyan, Y.V., Yeranosyan, M., Ulewicz, M., Laroze, D., Barseghyan, M.G., 2023. The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method, Materials, 16, 5516. DOI: 10.3390/ma16165516
  • 27. Nayana, A.M., Rakesh, P., 2021. Strength and durability study on cement mortar with ceramic waste and micro-silica, Materials Today: Proceedings, 5(11), 24780 24791.
  • 28. Nazer, A.S., Pavez, O., Rojas, F., 2021. Use of copper slag in cement mortar, REM: R. Escola de Minas, Ouro Preto, 65(1), 2012, 87-91. DOI:10.1590/S0370-44672012000100012.
  • 29. Pietrzak, A., 2018. Assessment of the impact of recycling from pet bottles in selected concrete properties, Construction of optimized energy potential, 7(1), 51-56, DOI: 10.17512/bozpe.2018.1.07.
  • 30. Pietrzak, A.. 2019. The effect of ashes generated from the combustion of sewage sludge on the basic mechanical properties of concrete, Construction of optimized energy potential, 8(1), 29-35, DOI: 10.17512/bozpe.2019.1.03.
  • 31. Pietrzak, A., Ulewicz, M., 2023. Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties, Materials, 16(6), DOI: 10.3390/ma16062231.
  • 32. Pitarch, A.M., Reig, L., Tomás, A.E., Forcada, G., Soriano, L., Borrachero, M. V., Payá J., Monzó, J.M., 2021. Pozzolanic activity of tiles, bricks and ceramic sanitary-ware in eco-friendly Portland blended cements, Journal of Cleaner Production, 279, 123713.
  • 33. Pizoń, J., Gołaszewski, J., Alwaeli, M., Szwan, P., 2020. Properties of Concrete with Recycled Concrete Aggregate Containing Metallurgical Sludge Waste. Materials, 13, 1448, DOI:10.3390/ma13061448.
  • 34. Popławski J., 2020. Influence of biomass fly-ash blended with bituminous coal fly-ash on properties of concrete, Construction of Optimized Energy Potential (CoOEP), 9, 1, 89-96, DOI: 10.17512/bozpe.2020.1.11.
  • 35. Popławski, J.; Lelusz, M., 2023. Assessment of Sieving as a Mean to Increase Utilization Rate of Biomass Fly Ash in Cement-Based Composites, Applied Sciences 2023, 13, 1659.
  • 36. Rashad, A.M., 2014. A Brief Review on Blast-Furnace Slag and Copper Slag as Fine Aggregate in Mortar and Concrete Based on Portland Cement, Reviews on Advanced Materials Science, 44, 221-237.
  • 37. Rashad, A.M., 2022. Behavior of steel slag aggregate in mortar and concrete - A comprehensive overview, Journal of Building Engineering, 53, 104536, DOI:10.1016/j.jobe.2022.104536.
  • 38. Ray, S., Haque, M., Sakib, M. N., Mita, A.F., Rahman, M.D.M., Tanmoy, B.B., 2021. Use of ceramic wastes as aggregates in concrete production. A review, Journal of Building Engineering, 43, 102567.
  • 39. Rooholamini, H., Sedghi, R., Ghobadipour, B., Adresi, M., 2019. Effect of electric arc furnace steel slag on the mechanical and fracture properties of roller-compacted concrete, Construction and Building Materials, 211, 88-98.
  • 40. Saikia, N., de Brito, J., 2012. Use of plastic waste as aggregate in cement mortar and concrete preparation: A review, Construction and Building Materials, 34, 385-401.
  • 41. Šadzevičius, R., Gurskis V., Ramukevičius, D., 2023. Research on the properties of concrete with hemp shives, Construction of Optimized Energy Potential, 12, 25-32, DOI: 10.17512/bozpe.2023.12.03.
  • 42. Santamaría, A., Gonzalez, J., Losanez, M., Skaf, M., Ortega-Lopez, V., 2020. The design of self-compacting structural mortar containing steelmaking slags as aggregate, Cement and Concrete Composites, 111, 103627.
  • 43. Santamaría-Vicario, I., Rodríguez, A., Junco, C., Gutierrez-Gonzalez, S., Calderon, V., 2016. Durability behavior of steelmaking slag masonry mortars, Materials & Design, 97, 307-315.
  • 44. Ulewicz, M., Halbiniak, J., 2016. Application of waste from utilitarian ceramics for production of cement mortar and concrete, Physicochemical Problems of Mineral Processing, 52(2), 1002-1010, DOI: 10.5277/ppmp160237.
  • 45. Ulewicz, M., Jura J., 2017. Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar, E3S Web of Conferences 18, 01029, DOI: 10.1051/e3sconf/20171801029.
  • 46. Ulewicz, M., Pietrzak, A., 2021. Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats, Materials, 14(4), DOI: 10.3390/ma14040872.
  • 47. Ulewicz, M., Pietrzak, A., 2021. Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats, Materials, 14(4), DOI: 10.3390/ma14040872.
  • 48. Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q., 2021. A comprehensive review on the applications of coal fly ash, Earth-Science Reviews, 141, 105-121.
  • 49. Yang, J., Zeng, L., He, X., Su, Y., Li, Y., Tan, H., Jiang, B., Zhu H., Oh, S.K., 2021. Improving durability of heat-cured high volume fly ash cement mortar by wet-grinding activation, Constructioand and Buildings Materials, 289, 123157.
  • 50. Yee Leng Ng, Aldahdooh, A., Alazaiza, M.Y.D. Bashir, M.J.K., Chok, V.S. Choon Aun Ng, 2022. Influence of alum sludge ash and ground granulated blast furnace slag on properties of cement mortar, Cleaner Engineering and Technology, 6, 100376.
  • 51. Yerramala, A., Chandurdu, R., and Desai, B., 2012. Influence of fly ash replacement on strength properties of cement mortar, International Journal of Engineering, Science and Technology (IJEST), 4, 3657-3665.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe9a4a4f-9e7c-4b4e-9e48-d935275a8d0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.