Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The effectiveness of conventional demining rollers, especially in real working conditions constitute an open scientific problem. The paper provides a description of developed simulation model (simplified assumptions, it’s kinematic structure, interaction between separate bodies and dynamic) of tracked vehicle equipped with a single demining section of roller systems with rigid wheels. This model was used for simulation assessment of possibility of mine pressure fuse activation during route clearance operations with different speeds and on different terrain profile and roughness.
Wydawca
Rocznik
Tom
Strony
163--178
Opis fizyczny
Bibliogr. 46 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
- 1. Ege Y., Kakilli A., Kılıç O., Çalık H., Çıtak H., Nazlıbilek S., et al. Performance analysis of techniques used for determining land mines. Int J Geosci. 2014; 5: 1163–1189. https://doi.org/10.4236/ijg.2014.510098.
- 2. Headquarters Department of the Army. Mine/Countermine operations. Washington DC; 2004 Feb 2.
- 3. NATO Standardization Agreement (STANAG) 2036. Land minefield laying, marking, recording, and reporting procedures. Edition 5. 2005 Jan 27.
- 4. Hutsul T., Khobzei M., Tkach V., Krulikovskyi O., Moisiuk O., Ivashko V., et al. Review of approaches to the use of unmanned aerial vehicles, remote sensing, and geographic information systems in humanitarian demining: Ukrainian case. Heliyon. 2024; 10(7). https://doi.org/10.1016/j.heliyon.2024.e29142.
- 5. Mathewson A. Open-source research and mapping of explosive ordnance contamination in Ukraine. J Conventional Weapons Destruction. 2022; 26(1): 3. Available from: https://commons.lib.jmu.edu/cisr-journal/vol26/iss1/3.
- 6. Tomica D., Rubiec A. Modern mine scattering systems. Biuletyn WAT. 2021; 70(2): 101–120. https://doi.org/10.5604/01.3001.0015.7013.
- 7. Szczepaniak M., Jasiński W., Madej W., Krysiak P., Śliwiński J. Controlled antitank mines of new generation. Issues of Armament Technology. 2016; 140(4): 29–39. https://doi.org/10.5604/01.3001.0010.0447.
- 8. Motrycz, Grzegorz. Cases of using improvised explosive devices. Szybkobieżne Pojazdy Gąsienicowe 2017; 44(2).
- 9. Bartnicki A., Łopatka J.M., Muszyński T., Wrona J. Concept of IED/EOD operations (CONOPs) for engineer mission support robot team. J KONES. 2015; 22: 269–273. https://doi.org/10.5604/12314005.1181703.
- 10. Naidu H., Ramtekkar P. An innovative affordable robot to defuse landmines using IoT and wireless communication technique to save precious life. 2023 11th International Conference on Emerging Trends in Engineering & Technology - Signal and Information Processing (ICETET - SIP), Nagpur, India. 2023, 1–5. https://doi.org/10.1109/ICETET-SIP58143.2023.10151542.
- 11. Bello R. Literature review on landmines and detection methods. Frontiers in Science. 2013; 3(1): 27–42. https://doi.org/10.5923/j.fs.20130301.05.
- 12. Mikulic D. Design of demining machines. In: Design of Demining Machines. Springer, London. 2013. https://doi.org/10.1007/978-1-4471-4504-2_3.
- 13. Klement W., Klimentowski F. Miny przeciwpiechotne i przeciwpancerne w rejonach misji specjalnych. Wrocław: WSOWLąd.; 2005.
- 14. Alberts W.C. 2nd, Waxier R., Sabatier J.M. Studying the mechanical behavior of a plastic, shock-resisting, antitank landmine. J Acoust Soc Am. 2006 Dec; 120(6): 3655–63. https://doi.org/10.1121/1.2357999. PMID: 17225393.
- 15. Bishop S., Chen T.H., Tsopelas P. Finite element modal analysis of an Italian VS-1.6 antitank landmine pressure plate. Proc. SPIE 5794, Detection and Remediation Technologies for Mines and Minelike Targets X. 2005; 5794. https://doi.org/10.1117/12.602555.
- 16. Krysiak P., Śliwiński J. Tactical and technical exploitation of mechanical mine rollers on the modern battlefield. In: Szrek J., editor. Interdyscyplinarność badań naukowych 2012: praca zbiorowa. Oficyna Wydawnicza Politechniki Wrocławskiej; 2012.
- 17. Habib M.K., Baudoin Y. Mechanical mine clearance: Development, applicability and difficulties. In: Baudoin Y., Habib M.K., eds. Using Robots in Hazardous Environments. Woodhead Publishing; 2011; 299–326. https://doi.org/10.1533/9780857090201.3.299.
- 18. Coley G.G. Field testing of the SDTT segmented roller. Technical report. Defence Research and Development Canada; 2003.
- 19. Sharpe M. The effects of velocity on the performance of mine roller systems. Technical memorandum. Defence Research and Development Canada; 2012.
- 20. de Brun E., Poff S. SCAMP anti-personnel mine roller performance testing. J ERW Mine Action. 2011; 15(2): 43. Available from: https://commons.lib.jmu.edu/cisr-journal/vol15/iss2/43.
- 21. Liu J., Kushwaha R.L. Effect of travel speed and vertical load on the subsoil force and displacement under a smooth steel roller. J Terramech. 2012; 49(5): 263–270. https://doi.org/10.1016/j.jterra.2012.09.001.
- 22. Nanivskyi R., Yemelianov A. Study of the kinematics of the working body of the trawler during movement through a minefield with impurities (eng. Research of kinematics of the working body of the trawl while driving on a minefield with irregularities). https://doi.org/10.33577/2312-4458.21.2019.24-28.
- 23. Sokol B., Yemelyanov O., Nagachevsky V., Nanivsky R. The influence of the parameters of the modernized working body of a mine travel on its operational characteristics (eng. Influence of the parameters of the modernized working body of the mine trawl on its operational characteristics). https://doi.org/10.31649/2413-4503-2019-10-2-126-133.
- 24. Tkachuk P., Yemelyanov O. Influence of soil characteristics on the dynamics of the working body of a mine travel (eng. Influence of soil characteristics on the dynamics of the mine trawl working body). https://doi.org/10.33577/2312-4458.24.2021.46-51.
- 25. Raymond J.B., Jayakumar P. The shearing edge of tracked vehicle – soil interactions in path clearing applications utilizing multi-body dynamics modeling & simulation. J Terramech. 2015; 58: 39–50. https://doi.org/10.1016/j.jterra.2014.12.003.
- 26. Renwick P. Mine detonation trailers: Stresses induced by wheels below the surface of a soil road. J Mine Action. 2008; 12(1): 46. Available from: https://commons.lib.jmu.edu/cisr-journal/vol12/iss1/46.
- 27. Barnat W., Kiczko A., Gotowicki P., Dybcio P., Szczepaniak M., Jasiński W. Experimental investigation of IED interrogation arm during normal operation and mine flail structure subjected to blast loading. In: Nawrat A., Bereska D., Jędrasiak K., editors. Advanced technologies in practical applications for national security. Studies in Systems, Decision and Control, vol 106. Springer, Cham; 2018; 195–207. https://doi.org/10.1007/978-3-319-64674-9_18.
- 28. Krysiak P., Jasiński W., Szczepaniak M., et al. Numerical and experimental analysis of impact of explosive charge on a mine roller. Problems of Mechatronics. Armament, Aviation, Safety Engineering. 2015; 6(4): 95–106. https://doi.org/10.5604/20815891.1185958.
- 29. Jasiński W., Krysiak P., Szczepaniak M., Barnat W., Moneta G. Urządzenie trałujące do rozminowania dróg na terenach niebezpiecznych - projekt, obliczenia, wykonanie. Systems: Journal of Transdisciplinary Systems Science. 2012; 16(1): 227–233.
- 30. Baranowski P., Małachowski J. Numerical study of selected military vehicle chassis subjected to blast loading in terms of tire strength improving. Bulletin of The Polish Academy of Sciences Technical Sciences, 2015; 63: 867–878. https://doi.org/10.1515/bpasts-2015-0099.
- 31. Trajkovski J., Perenda J., Kunc R. Blast response of light armoured vehicles (LAVs) with flat and V-hull floor. Thin-Walled Structures. 2018; 131. https://doi.org/10.1016/j.tws.2018.06.040.
- 32. Sapietová A., Novák P., Sága M., Šulka P., Sapieta M. Dynamic and stress analysis of a locking mechanism in the Ansys Workbench software environment. Advances in Science and Technology Research Journal. 2019; 13(1): 23–8. https://doi.org/10.12913/22998624/101601.
- 33. Sapietová A., Sekerka M., Vaško M., Sapieta M. Synthesis of a pumping unit with consideration of a flexible member in the system. Advances in Science and Technology Research Journal. 2016; 10(31): 119–23. https://doi.org/10.12913/22998624/64069.
- 34. MSC Software Corporation. Adams 2021 – Adams solver user’s guide.
- 35. Kciuk S., Mężyk A., Mura G. Modelling of tracked vehicle dynamics. J KONES. 2010; 17: 223–232.
- 36. Gniłka J., Mężyk A. Experimental identification and selection of dynamic properties of a high-speed tracked vehicle suspension system. Eksploatacja i Niezawodność - Maintenance and Reliability. 2016; 19: 108–113. https://doi.org/10.17531/ein.2017.1.15.
- 37. Gniłka J., Machoczek T., Mężyk A. Wyznaczanie wielkości kinematycznych układu zawieszenia szybkobieżnego pojazdu gąsienicowego. Modelowanie Inżynierskie. 2014; 22: 52–57.
- 38. Trease B. et al. Dynamic modeling and soil mechanics for path planning of the Mars exploration rovers. 35th Mechanisms and Robotics Conference, Parts A and B, Washington, DC, USA, Jan. 2011; 755–765. https://doi.org/10.1115/DETC2011-47896.
- 39. Tao J., Deng Z., Fang H., Gao H., Yu X. Development of a wheeled robotic rover in rough terrains. In: 2006 6th World Congress on Intelligent Control and Automation, Dalian, 2006; 9272–9276. https://doi.org/10.1109/WCICA.2006.1713795.
- 40. Šulka P., Sapietová A., Dekyš V., Sapieta M. Analysis and synthesis parameters influencing the effects of impact. MATEC Web Conf. 2018; 157: 1–11. https://doi.org/10.1051/matecconf/201815703018.
- 41. Maclaurin B. Progress in British tracked vehicle suspension systems. 1983. https://doi.org/10.4271/830442.
- 42. Chodkowski A. Badania modelowe pojazdów gąsienicowych i kołowych. WKiŁ, Warszawa. 1982.
- 43. Gagneza G., Chandramohan S. Estimation of road loads and vibration transmissibility of torsion bar suspension system in a tracked vehicle. J Inst Eng India Ser C. 2019; 100: 747–761. https://doi.org/10.1007/s40032-018-0460-8.
- 44. Ravishankar M.K., Sujatha C. Ride dynamic analysis of a military tracked vehicle: A comparison of torsion bar suspension with hydrogas suspension. 2008. https://doi.org/10.4271/2008-01-0780.
- 45. MSC Software Corporation. Adams 2021 – Adams tire user’s guide.
- 46. ISO 8608. Mechanical vibration–road surface profiles–reporting of measured data. International Standardization Organization, Geneva, Switzerland; 1995
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe96fb55-a5fb-445e-a628-9c1d41addf9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.