PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The bandgap energy of the dilute bismuth GaBixSb1−x alloy depending on temperature

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The bandgap energy of the dilute bismuth GaBixSb1−x alloy vs. temperature is investigated in this study. Its reduced temperature-sensitiveness is because of the localized character of the valence band states (VBS). In order to describe the reduced temperature-sensitiveness of the bandgap energy, a new term including localized energy is added to Varshni's equation. It is found that the localized energy exhibits an increasing trend as the bismuth fraction increases, which indicates that the localized character of the VBS becomes strong with the increasing bismuth fraction. It is also found that the influence of the bismuth fraction on the temperature dependence of the bandgap energy of GaBixSb1−x is smaller than that of GaBixSb1−x. In addition, the element indium is undoubtedly a good candidate to lessen the bismuth fraction to realize that the spin-orbit-splitting (SOP) energy surpasses the bandgap energy in GaBixSb1−x.
Wydawca
Rocznik
Strony
298--304
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronics and Information Engineering, Tiangong University, Tianjin, 300387, China
autor
  • Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronics and Information Engineering, Tiangong University, Tianjin, 300387, China
Bibliografia
  • [1] Francoeur S., Seong M., Mascarenhas A., Tixier S., Adamcyk M., Tiedje T. Band gap of GaAs1−xBix, 0 < x < 3.6%, Appl Phys Lett. 2003;82: 3874.
  • [2] Yoshida J, Kita T, Wada O, Oe K, Temperature dependence of GaAs1−xBix band gap studied by photoreflectance spectroscopy, Japan J Appl Phys. 2003;42;371.
  • [3] Fluegel B, Francoeur S, Mascarenhas A, Tixier S, Young E, Tiedje T. Giant Spin-Orbit Bowing in GaAs1−xBix, Phys Rev Lett. 2006;97:67205.
  • [4] Rajpalke MK, Linhart WM, Birkett M, Yu KM, Scanlon DO, Buckeridge J, et al. Growth and properties of GaSbBi alloys, Appl Phys Lett. 2013;103:142106.
  • [5] Rajpalke MK, Linhart WM, Yu KM, Jones TS, Ashwin MJ, Veal TD. Bi flux-dependent MBE growth of GaSbBi alloys, J Crys Growth. 2015;425:241.
  • [6] Rajpalke MK, Linhart WM, Birkett M, Yu KM, Alaria J, Kopaczek J. et al. High Bi content GaSbBi alloys, J Appl Phys, 2014;116:043511.
  • [7] Delorme O, Cerutti L, Tournié E, Rodriguez J-B. Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys, J Crys Growth. 2017;477:144.
  • [8] Polak MP, Scharoch P, Kudrawiec R. First-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental data, Semicond Sci Technol. 2015;30:094001.
  • [9] Polak MP, Scharoch P, Kudrawiec R, Kopaczek J, Winiarski MJ, Linhart WM, et al. Theoretical and experimental studies of electronic band structure for GaSb1−xBix in the dilute Bi regime, J Phys D Appl Phys. 2014;47:355107.
  • [10] Kopaczek J, Kudrawiec R, Linhart WM, Rajpalke MK, Yu KM, Jones TS, et al. Temperature dependence of the band gap of GaSb1−xBix alloys with 0 < x ≤ 0.042 determined by photoreflectance, Appl Phys Lett. 2013;103:261907.
  • [11] Kopaczek J, Kurdrawiec R, Linhart W, Rajpalke M, Jones T, Ashwin M, et al. Low-and high-energy photoluminescence from GaSb1−xBix with 0< x ≤ 0.042, Appl Phys Exp. 2014;7:111202.
  • [12] Li YH, Gong XG, Wei SH. Ab initio all-electron calculation of absolute volume deformation potentials of IV-IV, III-V, and II-VI semiconductors: The chemical trends, Phys Rev B. 2006;73:245206.
  • [13] Wei SH, Zunger A. Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends, Phys Rev B. 1996;60:5404.
  • [14] Pettinari G, Polimeni A, Capizzi M, Blokland JH, Christianen PCM, Maan JC. et al. Influence of bismuth incorporation on the valence and conduction band edges of GaAs1−xBix, Appl Phys Lett. 2008;92:262105.
  • [15] Fitouri H, Essouda Y, Zaied I, Rebey A, Jani BE. Photoreflectance and photoluminescence study of localization effects in GaAsBi alloys, Opt Mater. 2015;42:67.
  • [16] Zhao CZ, Li XT, Sun XD, Wang SS, Wang J. Composition dependence of the band gap energy of the Sb-rich GaBixSb1−x alloy (0≤ x≤ 0.26) described by the modified band anticrossing model, J Electron Mater. 2019;48:1599.
  • [17] Zhao CZ, Li NN, Wei T, Tang CX. Temperature and composition dependence of GaNAs(0 < x ≤ 0.05) before and after annealing, Chin Phys Lett. 2011;28:127801.
  • [18] Buyanova IA, Izadifard M, Kasic A, Arwin H, Chen WM, Xin HP. et al. Analysis of band anticrossing in GaNxP1−x alloys, Phys Rev B. 2004;70:085209.
  • [19] Broesler R, Haller EE, Walukiewicz W, Muranaka T, Matsumoto T, Nabetani Y. Temperature dependence of the band gap of ZnSe1−xOx, Appl Phys Lett. 2009;95:151907.
  • [20] Zhao CZ, Sang S, Wei T, Wang SS, Lu KQ. The temperature dependence of the band gap energy of the dilute oxygen ZnOxSe1−x, Appl. Phys A. 2017;123:134.
  • [21] Zhao CZ, Zhu MM, Wang J, Wang SS, Lu KQ. The localized effect of the Bi level on the valence band in the dilute bismuth GaBixAs1−x alloy, Superlattice Microst. 2018;117:515.
  • [22] Varshni YP. Temperature dependence of the energy gap in semiconductors, Physica. 1967;34:149.
  • [23] Madelung O. Semiconductors: Data Handbook. Berlin: Springer; 2004.
  • [24] Wang J, Zhang Y, Wang L-W. Systematic approach for simultaneously correcting the band-gap and p-d separation errors of common cation III-V or II-VI binaries in density functional theory calculations within a local density approximation, Phys Rev B. 2015;92:045211.
  • [25] Vurgaftma I, Meyer JR, Ram-Mohan LR. Band parameters for III–V compound semiconductors and their alloys, J Appl Phys. 2001;89:5815.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe925bea-ca13-4f3e-b49b-3fa54230f59c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.