PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ants Colony Optimisation of a Measuring Path of Prismatic Parts on a CMM

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents optimisation of a measuring probe path in inspecting the prismatic parts on a CMM. The optimisation model is based on: (i) the mathematical model that establishes an initial collision-free path presented by a set of points, and (ii) the solution of Travelling Salesman Problem (TSP) obtained with Ant Colony Optimisation (ACO). In order to solve TSP, an ACO algorithm that aims to find the shortest path of ant colony movement (i.e. the optimised path) is applied. Then, the optimised path is compared with the measuring path obtained with online programming on CMM ZEISS UMM500 and with the measuring path obtained in the CMM inspection module of Pro/ENGINEER® software. The results of comparing the optimised path with the other two generated paths show that the optimised path is at least 20% shorter than the path obtained by on-line programming on CMM ZEISS UMM500, and at least 10% shorter than the path obtained by using the CMM module in Pro/ENGINEER®.
Słowa kluczowe
Rocznik
Strony
119--132
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr., wzory
Twórcy
  • University of Belgrade, Department for Production Engineering, Kraljice Marije 16, 11120 Belgrade 35 PF 34, Serbia
  • University of Belgrade, Department for Production Engineering, Kraljice Marije 16, 11120 Belgrade 35 PF 34, Serbia
  • Vienna University of Technology, Department for Interchangeable Manufacturing and Industrial Metrology, 1060 Wien, Getreidemarkt 9/3113, BA09, Austria
  • Metropolitan University, Faculty of Information Technology, Tadeusa Koscuska 63, 11000 Belgrade, Serbia
Bibliografia
  • [1] Hwang, Y.C., Tsai, Y.C., Chang, A.C. (2004). Efficient inspection planning for coordinate measuring machines. Int. J. Adv. Manuf. Technol., 23,732‒742.
  • [2] Dorigo, M., Gambardella, M.L. (1997). Ant colonies for the travelling salesman problem. BioSystems, 43, 73-81.
  • [3] Dorigo, M., Stutzle, T. (2004). Ant Colony Optimization. The MIT Press Cambridge, Massachusetts London, England.
  • [4] Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of Life Reviews, 2, 353-373.
  • [5] Dorigo, M., Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344, 243-278.
  • [6] Cheng, F.T., Chun W.T., Ching C.T. (2004). A new hybrid heuristic approach for solving large traveling salesman problem. Information Sciences, 166, 67-81.
  • [7] Lu, C.G, Morton, D., Wu, M.H., Myler, P. (1999). Genetic algorithm modelling and solution of inspection path planning on a Coordinate Measuring Machine (CMM). Int. J. Adv. Manuf. Technol., 15, 409-416.
  • [8] Liangsheng, Q., Guanhua, X., Guohua, W. (1998). Optimization of the measuring path on a coordinate measuring machine using genetic algorithms. Measurement, 23, 159-170.
  • [9] Moroni, G., Petro, S. (2013). Inspection strategies and multiple geometric tolerances. Procedia CIRP, 10, 54-60.
  • [10] Pellitero, M.S., Barreiro, J., Cuesta, E., Alvarez, J.B. (2011). A new process-based ontology for KBE system implementation: application to inspection process planning. Int. J. Adv. Manuf. Technol., 57, 325-339.
  • [11] Stojadinovic, S., Majstorovic, V. (2012). Towards the development of feature - based ontology for inspection planning system on CMM. Journal of Machine Engineering, 12(1), 89‒98.
  • [12] Stojadinovic, S., Majstorovic, V. (2014). Developing engineering ontology for domain coordinate metrology. FME Transactions, 42(3), 249‒255.
  • [13] Majstorovic, D.V., Stojadinovic, M.S., Sibalija, V.T. (2015). Development of a knowledge base for the planning of prismatic parts inspection on CMM. Acta IMEKO, 4(2), 10‒17.
  • [14] Weckenmann, A., Werner, T. (2010). Holistic qualification in manufacturing metrology by enhancing knowledge exchange among different user groups. Metrol. Meas. Syst., 17(1), 17‒26.
  • [15] Myeong, W.C., Honghee, L., Gil, S.Y., Jinhwa, C. (2005). A feature - based inspection planning system for coordinate measuring machines. Int. J. Adv. Manuf. Technol., 26, 1078‒1087.
  • [16] Kramer, R.T., Huang, H., Messina, E., Proctor, M.F., Scott, H. (2001). A feature - based inspection and machining system. Computer - Aided Design, 33(9), 653‒669.
  • [17] Kamrani, A., Nasr, A.E., Ahmari, A.A., Abdulhameed, O., Mian, H.S. (2014). Feature-based design approach for integrated CAD and computer-aided inspection planning. Int. J. Adv. Manuf. Technol., 76(9‒ 12), 2159‒2183.
  • [18] Lemu, G.H. (2014). Current status and challenges of using geometric tolerance information in intelligent manufacturing systems. Adv. Manuf., 2, 13-21.
  • [19] Yuewei, B., Shuangyu, W., Kai, L., Xiaogang, W. (2010). A Strategy to Automatically Planning Measuring Path with CMM Offline. Proc. of International Conference on Mechanic Automation and Control Engineering (MACE), Wuhan, China, 3064‒3067.
  • [20] Hussien, A.H., Youssefy, M.A., Shoukryz, K.M. (2012). Automated Inspection Planning system for CMMs. Proc. of International Conference on Engineering and Technology, Cairo, Egypt, 1‒6.
  • [21] Zhao, F., Xu, X., Xie, Q.S. (2009). Computer - aided inspection planning - the state of the art. Computer in Industry, 60(7), 453‒466.
  • [22] Osanna, P.H. (1997). Intelligent production metrology ‒ A powerful tool for intelligent manufacturing. e&i Elektrotechnik und Informationstechnik, 114, 162‒168.
  • [23] Sładek, J., Sitnik, R., Kupiec, M., Błaszczyk, P. (2010). The hybrid coordinate measurement system as a response to industrial requirements. Metrol. Meas. Syst., 17(1), 109‒118.
  • [24] Sładek, J., Gąska, A., Olszewska, M., Kupiec, R., Krawczyk, M. (2013). Virtual coordinate measuring machine built using lasertracer system and spherical standard. Metrol. Meas. Syst., 20(1), 77‒86.
  • [25] Hammersley, J.M. (1960). Monte Carlo methods for solving multivariate problems. Ann. New York Acad. Sei., 86, 844‒874.
  • [26] Lee, G., Mou, J., Shen, Y. (1997). Sampling strategy design for dimensional measurement of geometric features using coordinate measuring machine. Int. J. Mach. Tools. Manufact., 37(7), 917‒934.
  • [27] Stojadinovic, S., Majstorovic, V., Durakbasa, N. (2015). A feature - based path planning for inspection prismatic parts on CMM. Proc. of XXI IMEKO World Congress Measurement in Research and Industry, Prague, Czech Republic.
  • [28] Schmitt, R., Zheng, H., Zhao, X., König, N., Coelho, R.R. (2009). Application of ant colony optimization to Inspection Planning. Proc. of International Conference on Computational Intelligence for Measurement Systems and Applications, Hong Kong, China.
  • [29] Sładek, J., Gąska, A. (2012). Evaluation of coordinate measurement uncertainty with use of virtual machine model based on Monte Carlo method. Measurement, 45, 1564-1575.
  • [30] ISO/TS 15530-3: Geometrical product specifications (GPS) - coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement - Part 3, Use of calibrated workpieces or standards (2011).
Uwagi
EN
The presented research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia and Vienna University of Technology, Department for Interchangeable Manufacturing and Industrial Metrology, High Precision Measurement Room – Nanometrology Laboratory.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe90593e-2ad1-46c9-8834-c000fd4e0485
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.