PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of leaching kinetics of cerussite in sodium hydroxide solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The leaching kinetics of cerussite in alkaline medium was investigated with respect to experimental variables such as sodium hydroxide concentration, temperature, particle size and stirring speed. The results showed that leaching reagent concentration and reaction temperature exerted significant effects on the extraction of lead, whereas particle size and stirring speed exhibited a relatively moderate effect on the leaching rate. The leaching process followed the kinetic law of the shrinking core model, and the dissolution rates were controlled by the surface chemical reaction with an apparent activation energy value of 43.79 kJ/mol. A corresponding dissolution kinetic equation was also proposed to describe the dissolution reaction. The results indicated that sodium hydroxide could be used as an effective leaching reagent for extracting lead from cerussite.
Słowa kluczowe
Rocznik
Strony
491--500
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Kunming Metallurgical Research Institute, Kunming 650031, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
Bibliografia
  • AGRAWAL, A., SAHU, K.K., PANDEY, B.D., 2004, Recent trends and current practices for secondary processing of zinc and lead. Part I: Lead recovery from secondary sources, Waste Management & Research 22, 240–247.
  • AYDOGAN, S., ERDEMOGLU, M., UCAR, G., ARAS, A., 2007, Kinetics of galena dissolution in nitric acid solutions with hydrogen peroxide, Hydrometallurgy 88, 52–57.
  • ATANASOVA, D.A., 2009, Hydrometallurgical processing of dumped lead paste for lead acid batteries, Bulgarian Chemical Communications 41, 285–296.
  • BABA, A.A., ADEKOLA, F.A., 2011, Comparative analysis of the dissolution kinetics of galena in binary solutions of HCl/FeCl3 and HCl/H2O2, International Journal of Minerals, Metallurgy and Materials 18, 9–17.
  • BADANOIU, G., BUZATU, T., BUZATU, M., BUTU, M., 2013, Study concerning PbO solubility in NaOH solution for the treatment of sulfate-oxide pastes obtained from dismantling used lead-acid batteries, Revista de Chimie 64, 1004–1010.
  • ETTLER, V., JOHAN, Z., BARONNET, A., JANKOVSKY, F., GILLES, C., MIHALJEVIC, M., SEBEK, O., STRNAD, L., BEZDICKA, P., 2005, Mineralogy of air-pollution-control residues from a secondary lead smelter: Environmental implications. Environmental Science & Technology 39, 9309–9316.
  • EKMEKYAPAR, A., AKTAS, E., KUNKUL, A., DEMIRKIRAN, N., 2012, Investigation of leaching kinetics of copper from malachite ore in ammonium nitrate solutions, Metallurgical and Materials Transactions B 43B, 764–772.
  • FENG, L.Y., YANG, X.W., SHEN, Q.F., XU, M.L., JIN, B.J., 2007, Pelletizing and alkaline leaching of powdery low grade zinc oxide ores, Hydrometallurgy 89, 305–310.
  • FEDJE, K.K., EKBERG, C., SKARNEMAK, G., STEENARI, B.M., 2010, Removal of hazardous metals from MSW fly ash-An evaluation of ash leaching methods, Journal of Hazardous Materials 173, 310–317.
  • HERRERA-URBINA, R., SOTILLO, F.J., FUERSTENAU, D.W., 1998, Amyl xanthate uptake by natural and sulfide-treated cerussite and galena, International Journal of Mineral Processing 55, 113–128.
  • HABBACHE, N., ALANE, N., DJERAD, S., TIFOUTI, L., 2009, Leaching of copper oxide with different acid solutions, Chemical Engineering Journal 152, 503–508.
  • LIAO, M.X., DENG, T.L., 2004, Zinc and lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach, Minerals Engineering 17, 17–22.
  • LIDDELL, K.C., 2005, Shrinking core models in hydrometallurgy: What students are not being told about the pseudo-steady approximation, Hydrometallurgy 79, 62–68.
  • LIU, W., TANG, M.T., TANG, C.B., HE, J., YANG, S.H., YANG, J.G., 2010, Dissolution kinetics of low grade complex copper ore in ammonia-ammonium chloride solution, Transactions of Nonferrous Metals Society of China 20, 910–917.
  • LIU, Q., ZHAO, Y.C., ZHAO, G.D., 2011, Production of zinc and lead concentrates from lean oxidized zinc ores by alkaline leaching followed by two-step precipitation using sulphides, Hydrometallurgy 110, 79–84.
  • LIU, Z.X., YIN, Z.L., HU, H.P., CHEN, Q.Y., 2012, Leaching kinetics of low-grade copper ore with high-alkality gangues in ammonia-ammonium sulphate solution, Journal of Central South University of Technology 19, 77−84.
  • LIMA, L.R.P.D., BERNARDEZ, L.A., 2013, Evaluation of the chemical stability of a landfilled primary lead smelting slag, Environmental Earth Sciences 68, 1033–1040.
  • MIKHLIN, Y., KUKLINSKIY, A., MIKHLINA, E., KARGIN, V., ASANOV, I., 2004, Electrochemical behaviour of galena (PbS) in aqueous nitric acid and perchloric acid solutions, Journal of Applied Electrochemistry 34, 37–46.
  • NIKOLIC, P.M., MIHAJLOVIC, P., TODOROVIC, D.M., 1996, Far infrared and infrared properties of single crystal anglesite, Spectrochimica Acta Part A 52, 131–137.
  • NAGIB, S., INOUE, K., 2000, Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching, Hydrometallurgy 56, 269–292.
  • NOWAK, P., LAAJALEHTO, K., 2007, On the interpretation of the XPS spectra of adsorbed layers of flotation collectors-ethyl xanthate on metallic lead, Physicochemical Problems of Mineral Processing 41, 107–116.
  • ORHAN, G., 2005, Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium, Hydrometallurgy 78, 236–245.
  • OKADA, T., TOJO, Y., TANAKA, N., MATSUTO, T., 2007, Recovery of zinc and lead from fly ash from ash-melting and gasification-melting processes of MSW-Comparison and applicability of chemical leaching methods, Waste Management 27, 69–80.
  • PAN, J.Q., SUN, Y.Z., LI, W., KNIGHT, J., MANTHIRAM, A., 2013, A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell, Nature Communications 4, 1–6.
  • QIN, W.Q., LI, W.Z., LAN, Z.Y., QIU, G.Z., 2007, Simulated small-scale pilot plant heap leaching of low-grade oxide zinc ore with integrated selective extraction of zinc, Minerals Engineering 20, 694–700.
  • QIN, W.Q., JIAO, F., XU, B.J., LIU, H., 2012, Purification of leachate from simultaneous leaching of galena concentrate and pyrolusite and preparation of PbSO4 and Mn3O4, Industrial & Engineering Chemistry Research 51, 5596–5607.
  • SCHRODER-WOLTHOORN, A., KUITERT, S., DIJKMAN, H., HUISMAN, J.L., 2008, Application of sulfate reduction for the biological conversion of anglesite (PbSO4) to galena (PbS), Hydrometallurgy 94, 105–109.
  • YUAN, W.Y., LI, J.H., ZHANG, Q.W., SAITO, F., 2012, Mechanochemical sulfidization of lead oxides by grinding with sulphur, Powder Technology 230, 63–66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe8fc1e8-af75-439d-8f79-538955f6ce97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.