PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving estimation accuracy of metallurgical performance of industrial flotation process by using hybrid genetic algorithm – artificial neural network (GA-ANN)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a back propagation feed forward neural network, with two hidden layers (10:10:10:4), was applied to predict Cu grade and recovery in industrial flotation plant based on pH, chemical reagents dosage, size percentage of feed passing 75 μm, moisture content in feed, solid ratio, and grade of copper, molybdenum, and iron in feed. Modeling is performed basing on 92 data sets under different operating conditions. A back propagation training was carried out with initial weights randomly mode that may lead to trapping artificial neural network (ANN) into the local minima and converging slowly. So, the genetic algorithm (GA) is combined with ANN for improving the performance of the ANN by optimizing the initial weights of ANN. The results reveal that the GA-ANN model outperforms ANN model for predicting of the metallurgical performance. The hybrid GA-ANN based prediction method, as used in this paper, can be further employed as a reliable and accurate method, in the metallurgical performance prediction.
Rocznik
Strony
366--378
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran
  • Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran
  • Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran
  • Faculty of Engineering, University of Kashan, Kashan, Iran
autor
  • Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran
autor
  • Sarcheshmeh Copper Concentration Plant, Kerman, Iran
Bibliografia
  • ALDRICH C., MOOLMAN D.W., EKSTEEN J.J., VAN DEVENTER J.S.J. (1995). Characterization of flotation processes with selforganizing neural nets. Chemical Engineering Communications 139 (1), 25–39.
  • ANDERSON D., MCNEILL G. (1992). Artificial Neural Networks Technology. Data and Analysis Center for Software, Kaman Sciences Corporation.
  • BANISI S., SARVI M., HAMIDI D., FAZELI A. (2003). Flotation circuit improvements at the Sarcheshmeh copper mine, Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C), 112(3), 198-205.
  • CHANG Y.T., LIN J., SHING SHIEH J., ABBOD M.F. (2012). Optimization the Initial Weights of Artificial Neural Networks via Genetic Algorithm Applied to Hip Bone Fracture Prediction, Advances in Fuzzy Systems, 1-9.
  • CHELGANI S.C., SHAHBAZI B., REZAI B. (2010). Estimation of froth flotation recovery and collision probability based on operational parameters using an artificial neural network, International Journal of Minerals, Metallurgy and Materials, 17, 526-534.
  • CILEK E.C. (2002). Application of neural networks to predict locked cycle flotation test results. J. Miner. Eng. 15, 1095–1104.
  • DEMUTH H., BEALE M. (2002). Neural network toolbox for use with MATLAB, User’s Guide, Version 4, Handbook.
  • EZIGWU E.O., ARTHUR S.J., HINES E.L. (1995). Tool wears prediction using artificial neural network. J Mater Process Technol; 49(3):225–64.
  • GOUWS F.S., ALDRICH C. (1996). Rule-Based Characterization of Industrial Flotation Processes with Inductive Techniques and Genetic Algorithms. Industrial & Engineering Chemistry Research 35(11), 4119-4127.
  • JAHEDSARAVANI A., MARHABAN M.H., MASSINAEI M. (2015). Application of statistical and intelligent techniques for modeling of metallurgical performance of a batch flotation process. Chemical Engineering Communications, 203(2), 151-160.
  • LABIDI J., PELACH M.A., TURON X. (2007). Predicting flotation efficiency using neural networks. Chem. Eng. Process. 46, 314–322
  • LIU J.J., MACGREGOR J.F., (2008). Frothbased modeling and control of flotation processes. Miner. Eng., 21(2008): 642651.
  • MASSINAEI M., SEDAGHATI M.R., REZVANI R., MOHAMMADZADEH A.A. (2014). Using data mining to assess and model the metallurgical efficiency of a copper concentrator. Chemical Engineering Communications 201(10), 1314–1326.
  • MONTANA D.J., DAVIS L. (1989). Training Feed forward neural networks using genetic algorithms. in Proceedings of the 11th International Joint Conference on Artificial Intelligence, 1, 762–767.
  • MOOLMAN D.W., ADRICH C., SCHMITZ G.P.J., VAN DEVENTER J.S.J. (1996). The interrelationship between surface froth characteristics and industrial flotation performance. Minerals Engineering, 9(8), 837−854.
  • NAKHAEI F., IRANNAJAD M. (2013). Comparison between neural networks and multiple regression methods in metallurgical performance modeling of flotation column, International Journal of Mineral Processing, 110–111, 140–154.
  • NAKHAEI F., SAM A., MOSAVI M.R., VAGHEI Y. (2012). Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neural network and statistical techniques. International Journal of Mineral Processing, 110–111, 140–154.
  • NAKHAEI F., SAM A., MOSAVI M.R., ZEIDABADI S. (2010). Prediction of copper grade at flotation column concentrate using artificial neural network. IEEE Conference on Signal Processing.
  • RUMELHART D., HINTON G., WILLIAMS R. (1986). Learning representations by back propagating error, Nature, 323, 533–536.
  • SEXTON R.S., GUPTA J.N.D. (2000). Comparative Evaluation of Genetic Algorithm and Backpropagation for Training Neural Networks, Information Sciences, 129(1-4), 45–59.
  • SIVANANDAM S.N., DEEPA S.N. (2008). Introduction to Genetic Algorithms, Erich Kirchner, Heidelberg pub.
  • SMITH L.N., DIHORU L., ORBAN R. (2000). Combining image analysis and NNs to optimize powder packing density. Met. Powder Rep.; 55(3), 28–31.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe8f7694-1a2c-44d9-94ff-51803565f5a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.