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Abstract: In the paper, the results of tests of flux application for aluminum brazing processes using  

the low-presure cold gas spraying method, are presented. It was pointed out that this method could be 

used as an alternative to current methods of flux application, among others in the production of aluminum 

heat exchangers. The results of wettability tests made with braze spreading method on fluxed substrates 

and metallographic investigations of brazed joints are presented. Good quality of brazed joints without 

incompatibilities and good mechanical properties have been demonstrated. 
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Introduction 
The use of heat exchangers in the automotive industry dates back to the late 19th century. Since then, 

commensurably with the development of technology, heat exchangers used in the automotive industry have 

begun their evolution process. This development is observed both in the plane of materials used  

in their production and in the technology of their production, mainly using various welding techniques [1]. 

In addition, the evolution of heat exchangers is determined by a significant increase in the technological 

advancement of motor vehicles, which creates new areas in which heat exchangers are used, e.g. gearbox oil 

cooler, engine oil cooler, supercharged air cooler, fuel coolers [1]. Not without significance is the growing 

ecological and economic awareness of society, forcing manufacturers to use lightweight, easily recyclable 

construction materials. As a result, currently heat exchangers used in various types of motor vehicles,  

in aviation, plumbing, etc. are made of aluminum alloys [2÷8].  

The production of innovative heat exchangers requires the use of highly efficient processes that are able 

to ensure the achievement of durable, aesthetic joints of good quality and good operational properties, 

enabling them to work in various, often adverse conditions. The mass production of aluminum heat 

exchangers mainly uses tunnel furnaces operating in CAB technology (Controlled Atmosphere Brazing),  

in which nitrogen is the most commonly used inert gas [1]. The use of CAB technology allows achieving 

much greater line production efficiency and better repeatability than e.g. in a batch furnace. In addition, 

flame brazing is used in unit production or during the assembly of some heat exchanger components 

manufactured in the CAB technology [1,9]. 

The soldering process requires the use of additional materials ‒ binder in the form of solder and very 

often fluxes, which in some applications can be replaced by a controlled atmosphere, including vacuum [2]. 

When brazing aluminum heat exchangers, solders are also aluminum alloys, but with a lower melting point 

relative to the bonded material. This is achieved by adding silicon to aluminum, resulting in Al-Si siluminium 

solders [1,2]. Currently in the automotive industry, the most commonly used is solder with AlEi7.5 (EN AW-

4043) hypoeutectic composition, in addition, AlSi10 (EN AW-4045) and AlSi12 (EN AW-4047) alloys with 

eutectic composition are used, mainly in places where exchanger temperature during soldering is locally 

lowered [1]. In addition, the process requires the use of a chemically active flux, which is most often the 

NOCOLOK® non-corrosive flux (inorganic KF1-3AlF4-6 fluoride salt) [1,9]. The flux is applied to previously 

prepared exchangers, assembled in a special tooling, at the initial stage of furnace soldering.  

The flux is designed to provide good wettability that determines good fill of the solder gap. However, you 

must follow the rules for the proper application of the appropriate amount. This is particularly important 
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because after the brazing process, any residues of post-flux slag deteriorate some of the properties  

of the exchanger itself. In the case of flux residue on the outer surface of the heat exchanger element involved  

in heat exchange, the thermal conductivity may deteriorate. Depending on the materials used, the function  

of the exchanger and the operating environment, the accumulation of more flux slag residues can also be  

a source of potential corrosion in special cases. There is also a problem of reacting (so-called gelation) of flux 

residue from the inside of the exchanger with refrigerant inhibitors. This phenomenon consists in flushing flux 

residues from the inside of the components in the cooling system through the coolant, which can lead  

to throttling or clogging of one of the heat exchangers from the system - usually with a small cross-sectional 

area [1]. Currently, the automotive industry is introducing increasingly stringent standards that limit  

the amount of flux used. It causes that for some applications new solutions and methods of applying flux are 

being sought, which will ensure strict control of its quantity, which is impossible or very difficult in the case of 

currently used methods.  

Flux application is therefore a very important part of the technological process of manufacturing solder 

joints. It is especially important in the production of aluminum heat exchangers due to their complicated 

shape. Currently, the most commonly used methods of applying flux to the surfaces of aluminum heat 

exchangers are - spraying the flux water suspension, spraying the flux mixture with air using electrostatic 

phenomena, spraying the flux in the form of paint (water flux suspension with the addition of an adhesive) 

and applying the flux in the form of a paste (mixture flux and alcohols] [1].  

Not in every application, however, the above methods are fully effective or do not provide an effective 

solution in the light of new, strict regulations on the control of the amount of flux applied. The challenges 

faced by the industry producing aluminum heat exchangers have become one of the basic reasons for 

undertaking this research topic. It was decided to explore the possibility of using the method of low-pressure 

cold gas spraying (LPCS) in the application of flux on the surface of aluminum alloys in the context of its 

subsequent use in industrial conditions. 

This method consists of accelerating compressed and heated gas to supersonic speeds, to which a 

coating material in the form of powder is fed through a separate wire under the influence of vacuum.  

The powder mixes with the gas at the point of narrowing of the convergent-divergent de Laval’s nozzle. The 

gas used for spraying can be helium, nitrogen or air at a temperature of 200÷650 °C and a pressure  

in the range of 0.5÷0.9 MPa. The connection of powder particles with the substrate occurs at the time of their 

mutual contact as a result of plastic (adiabatic) deformation resulting from the exchange of their high kinetic 

energy. The coating is built in a solid state due to the temperature of the powder, which may be close to, but 

not exceed, the melting point of the parent material. The temperature during spraying is relatively low 

compared to other thermal spraying methods, which means that the applied layers do not oxidize so much 

[10]. 

Due to the low cost of coating production, the method is widely used in repair work on the surface  

of elements that have changed as a result of corrosion, wear or mechanical damage. This application can  

be found, among others in the aviation industry. The costs of buying new parts are reduced by restoring the 

original dimensions of worn elements mainly from aluminum and magnesium, such as gear housing, 

actuators, etc. [10]. In addition, as stated in papers [11,12], the method also works well in welding processes, 

especially soldering, materials with different physicochemical and mechanical properties.  

Materials and research methodology 

Basic and additional materials  
Attempts to apply flux by the LPCS method for the brazing process were carried out on an aluminum 

alloy substrate ‒ EN AW-3003. It is one of the most commonly used alloys used to manufacture most of  

the heat exchanger components, such as tubes and heat dissipating elements in the form of appropriately 

shaped tapes [1]. The binder selected was EN AW-4047 (AlSi12) near-eutectic brazing filler metal containing 

in its chemical composition an addition of approx. 12% wt. Si. The chemical composition of the binder and 

the basic material together with their melting temperature are presented in table I [13].  

Table I. Chemical composition of the base material and the binder [13] 

Alloy          

designation 

Chemical composition, wt.% Melting temperature 

range, °C Si Fe Cu Mn Mg Zn Al 

EN AW-3003 max. 0.60 max 0.70 0.05÷0.20 1.00÷1.50 ‒ max. 0.10 rest 640÷655 

EN AW-4047 11.5÷12.5 max 0.80 max 0.30 ‒ max. 0.10 max. 0.20 rest 577÷582 
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Flux according to the NOCOLOK® technology in the form of powder with an average particle size  

in the range of 2÷6 µm was selected for spraying tests. The activity temperature of the flux is in the range  

of 567÷572 °C. Chemical composition of the flux according to the manufacturer's data is respectively: 28÷31% 

wt. K, 16÷18% wt. Al, 49÷53% wt. F, max. 2.5% wt. LOH [14]. 

 Research methodology 
As mentioned above, attempts have been made to apply flux to aluminum substrates by using low 

pressure cold gas spraying (LPCS). The flux spraying process was carried out on a low-pressure DYMET 413 

device, equipped with a de Laval nozzle gun with an output diameter of 5 mm and a built-in 10 kW heater 

connected to a manipulator working in 3 axes. Before the flux was applied to the substrates that were used 

for the soldering process, the selection of parameters was carried out consisting in spraying tests for various 

process variables. Changed among others gas heating temperature, gas pressure and burner feed speed. The 

value of parameters for which flux was applied for soldering tests are presented in table II, and when 

selecting them, the adhesion of the flux layer applied to the substrate and its external appearance were 

assessed.  

Table II. Parameters of the NOCOLOK® flux spraying process 

Gas pressure 
Gas heating 

temperature 
Torch feed Nozzle distance Powder feed rate 

5 bar 200 °C 10 mm/s 10 mm 8 g/min 

Figure 1 shows a cross-sectional view of the applied flux layer on an aluminum substrate. The average 

thickness of the flux layer applied was 5 μm. Since the flux layer has a dark color similar to the background 

color (Fig. 1a), the range of its occurrence is marked in yellow in figure 1b. 

 
(a) (b) 

Fig. 1. NOCOLOK® flux layer applied to EN AW-3003 alloy substrate by means of LPCS method 

The flux was applied to two types of 30 x 30 mm samples used for wettability tests and 25 x 80 mm 

samples, which were used to make lap joints. For the latter, flux was applied to only one end of the sample 

to a width of 10 mm, which corresponded to the length of the overlap. A constant braze gap width  

of 0.2 mm was used, which was determined using steel spacers. Brazing tests were carried out in a resistance 

heated furnace using an additional nitrogen blanket atmosphere, just like in real industrial brazing conditions 

in CAB tunnel furnaces. Samples placed on a ceramic support were put into an oven heated to 600 °C, brazing 

time due to the high thermal inertia of the samples was 5 minutes. After the brazing time elapsed, the heating 

was turned off, the furnace chamber was opened, leaving the samples to reach the ambient temperature. 

Then, flux residues were removed from them under running water, dried and prepared for further 

metallographic and mechanical tests. For comparative purposes, the same samples were also made, except 

that the NOCOLOK® flux was applied in the form of a paste. 
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Research results and discussion 

 Tests of flowability and wettability   
The effectiveness of the applied flux layer on the possibility of correct brazing process was assessed  

by the flow method, which is a measure of the ability of the liquid binder to spread in any directions on  

the surface of the material. The flowability and wettability largely depend on the physicochemical properties 

of the braze itself, the base material and the size of the adhesive forces, and both properties are closely related. 

The flowability is determined on the basis of the planed surface of the solder flow – KS coefficient (1), as 

well as the thickness of the solder layer after melting – KH coefficient (3).  

• The KS coefficient is determined from the formula: 

𝐾𝑠 =
𝐴ś𝑟 − 𝐴𝑜

𝐴𝑜

                                                                      (1) 

    
Where: 

KS – braze dissolution coefficient, 

Aśr – average braze surface area, 

Ao – surface of the flat projection of the spherical braze sample with the volume V on ground plane, calculated 

from the formula (2): 

𝐴𝑜 = [
3

4
∙ 𝜋 ∙ 𝑉]

2
3

                                                                      (2) 

 

 
• And the KH coefficient is equal: 

  

𝐾𝐻 =
𝐷 − 𝐻ś𝑟

𝐷
∙ 100%                                                                (3) 

where:  

KH – melted braze layer thickness coefficient,  

Hśr – average thickness of the molten braze layer,  

D – theoretical diameter of a spherical braze sample with a volume of V, in the absence of wetting, calculated 

from formula (4). 

𝐷 = 1,2 ∙ 𝑉
1
3                                                                           (4) 

 
Good braze flow is assumed when the value of KH > 70%. In the case of the KS coefficient, the average 

absolute value of the real molten braze surface (Aśr - Ao) is obtained in relation to the material surface obscured 

by the projection of the braze sample. 

The results of the flow and wettability tests are presented in table III, while figure 2 shows examples of 

contact angles. In the case of samples where flux was applied by LPCS method, 0.1 g braze was laid  

and then put into the furnace. However, in reference samples where flux in the form of a paste was used, its 

amount was equal to half the weight of the braze.  

Table III. Results of tests of the flow and wettability of the EN AW-4047 braze depending on the method of flux 

application 

Flux application 

method 

Substrate 

type 

Flowability 1 Wettability 2 

Aśr 

[mm2] 

σA 

[mm2] 
KS 

Hśr 

[mm] 

σH 

[mm] 

KH 

[%] 
θśr [°] σθ [°] 

LPCS 
EN AW-3003 

129.8 8.4 6.4 0.29 0.015 92.3 9.6 3 

Paste  137.5 12.7 6.8 0.23 0.014 93.9 8.1 2.5 

1 Aśr – average surface area of braze dissolution (from 5 measurements); σA, σH – standard deviation; 

  Ao = 17.6 mm2, Hśr – average braze layer thickness (from 5 measurements); D = 3.8 mm. 
2 θśr – average contact angle value (from 5 measurements); σθ – standard deviation. 
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(a) (b) 

Fig. 2. Exemplary values of contact angle of aluminum substrate with EN AW-4047 braze for flux applied a) by LPCS 

and b) in the form of paste  

The obtained results clearly confirm the possibility of using the LPCS method for applying fluxes  

for brazing processes. This is demonstrated, for example, by very good wettability, where the average contact 

angle is below 10° and is within the statistical error limit of test results obtained for fluxes applied in a 

conventional manner. It can therefore be presumed that this method is as effective as the methods currently 

used in the industry that produces aluminum heat exchangers for the automotive industry.  

Metallographic tests 
Metallographic tests were carried out only using light microscopy, as they were intended to identify 

possible brazing discrepancies occurring in brazed joints. For microscopic examination, solder joints were 

cut in half the width of the overlap and included in epoxy resin. Observations were made on ground and 

polished metallographic specimens.  

None of the analyzed joints found any brazing incompatibilities that could have a negative impact on 

their operational properties. The brazing gap in all three cases was correctly filled with braze over  

the entire length of the joint. The formed braze is characteristic of near-eutectic silumin filler metal (Fig. 3).  

It shows dendrites of the α (1) solution, spreading towards its center from the diffusion zone occurring at the 

border with native materials (2), distributed in the eutectic mixture (α+Si) (3). 

The flux applied to the EN AW-3003 aluminum alloy substrate creates good conditions for creating 

brazes with good quality, high aesthetics and most importantly without brazing incompatibilities. 

 Tests of mechanical properties 
Before the static shearing test, excess of the braze was mechanically removed. The dimensions of  

the overlap in each case were approximately 10 x 25 mm. A static tensile shear test was carried out on  

a testing machine with a hydraulic drive for a crossbeam speed of 2 mm/min. Six test joints were prepared 

for the tests, prepared for flux applied by the LPCS method and for flux in the form of paste applied manually 

on brazeable substrates.  

For such a large overlap surface, the destruction occurred in the native material, except for the lap joint. 

The tensile strength of the parent material was less than 120 MPa. It was decided to halve the length of the 

overlap (up to 5 mm), but this solution also did not bring the expected effect and the scrap was still located 

in the native material. The expected result, i.e. destruction in the lap joint, was obtained by reducing the 

overlap length to 2 mm. However, the fracture did not occur in the braze as a result of its decoherence, but 

as a result of being pulled out of the native material in the diffusion zone (Fig. 4).  

All results were similar (Table IV) and were slightly lower than the tensile strength of the native 

material, which according to the standard is 135 MPa. In the case of joints made using LPSC flux applied, 

shear strength was in the range of 116÷120 MPa, and similarly in the case of joints in which flux in the form of 

paste was applied: 114÷124 MPa. 
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(a) 

 
(b) 

 
(c) 

Fig. 3. Brazed joints of aluminum alloy EN AW-3003, made for flux applied by LPCS method: a) joint No. 1, b) joint  

No. 2, c) and joint No. 3; 1 ‒ dendrites of solid α solution, 2 ‒ diffusion zones, 3 ‒ eutectics (α + Si) 

 

 
Fig. 4. An example of a brazed joint fracture for an overlap length of 2 mm 
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Table IV. Results of static shear test during stretching of brazed joints 

Sample 

No. 
Flux  

Overlap 

dimensions 

[mm]  

Surface area 

[mm2] 

Destructive 

force           

[N] 

Tensile/shear       

strength                    

(Rm/Rt) [MPa] 

Fracture 

area 

1.1 

LPCS 

10 x 25 250 30 200 120.8 NM 

1.2 5 x 25 125 14 800 118.4 NM 

1.3 2 x 25 50 6 000 120.0 J-DZ 

1.4 2 x 25 50 5 800 116.0 J-DZ 

1.5 2 x 25 50 6 100 122.0 J-DZ 

1.6 2 x 25 50 6 000 120.0 J-DZ 

2.1 

Paste 

10 x 25 250 29 900 119.6 NM 

2.2 5 x 25 125 15 200 121.6 NM 

2.3 2 x 25 50 5 700 114.0 J-DZ 

2.4 2 x 25 50 6 200 124.0 J-DZ 

2.5 2 x 25 50 6 000 120.0 J-DZ 

2.6 2 x 25 50 5 900 118.0 J-DZ 

Notes: NM  –  native material, J-DZ – joint - diffusion zone 

 

Hardness measurements were also made using the Vickers method at a penetrator load of 50 G. The 

hardness distribution was characteristic for individual joint zones, i.e. braze was harder, on average 75.3 

HV0.05 with a noticeable slight increase in hardness in the diffusion zone to values in the range of 80.2÷84.8 

HV0.05. The average hardness of the native material was 53.6 HV0.05. 

Conclusions 
The research experiment carried out, the results of which are presented in the article, clearly shows that 

the use of the method of low-pressure cold gas spraying (LPCS) in the process of applying brazing flux is 

very effective. The use of the LPCS method is advantageous in the light of new, more stringent regulations 

in force in the automotive industry regarding the amount of flux used, because it allows to accurately control 

this parameter. In addition, another important aspect is the ability to apply flux in hard to reach places. The 

flux applied by LPCS effectively performs its role and works well in the brazing process of aluminum alloys, 

providing good brazing properties for the filler metal, which in turn enables the production of durable and 

functional braze joints. It is a method that provides similar efficiency in relation to the quality of connections 

obtained as currently used in industrial conditions methods of flux application. In the LPCS spraying process, 

the results obtained are influenced by a lot of different process variables that can be changed in a wide range, 

thus adapting, among others the amount of flux for specific requirements and industrial applications. 

However, it should be emphasized that the application of this method in industrial conditions may be 

significantly limited at the moment and requires a series of optimization tests.  
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