PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and analysis of a soft pneumatic actuator to develop modular soft robotic systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we describe the design and analysis of a Soft Cubic Module (SCM) with a single internal pneumatically actuated chamber. The actuation chamber’s shape, size and, orientation have been evaluated to realize a soft robotic actuator which can be further employed for the development of modular soft robotic systems. SCM can be easily manufactured through the molding process and it is composed of single soft material, the silicone polymer. Its external shape allows utilization of this module as a single block actuator as well as makes it easy to combine multiple SCM modules to build multiunit soft robotic systems. We consider it as our first tool to investigate whether the SCM scheme is sufficient to build soft robots which would be able to perform certain given tasks in various configurations like a soft gripper, bio-mimetic crawling mechanism or multi-axis manipulator. So far, the results obtained are encouraging in order to further develop and employ the SCM design scheme, focusing on its further geometrical optimization for both standalone configuration and assembly of multiple modules to realize novel, economic and easy to fabricate soft robotic systems.
Twórcy
  • DIME–PMAR Robotics Group of the University of Genoa, 16145 Genoa, Italy
autor
  • DIME–PMAR Robotics Group of the University of Genoa, 16145 Genoa, Italy
Bibliografia
  • [1] A. M. Tahir, G. A. Naselli, and M. Zoppi, “Soft robotics: A solid prospect for robotizing the natural organisms”, Advances in robotics research,vol. 2, no. 1, 2018, 69–97DOI: 10.12989/arr.2018.2.1.069.
  • [2] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, “Soft Robotics for Chemists”, Angewandte Chemie, vol. 123, no. 8, 2011, 1930–1935 DOI: 10.1002/ange.201006464.
  • [3] R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D. Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, “Multigait soft robot”, Proceedings of the National Academy of Sciences, vol. 108, no. 51, 2011, 20400–20403 DOI: 10.1073/pnas.1116564108.
  • [4] R. Deimel and O. Brock, “A novel type of compliant and underactuated robotic hand for dexterous grasping”, International Journal of Robotics Research, vol. 35, no. 1-3, 2016, 161–185 DOI: 10.1177/ 0278364915592961.
  • [5] H. Zhao, J. Jalving, R. Huang, R. Knepper, A. Ruina, and R. Shepherd, “A Helping Hand: Soft Orthosis with Integrated Optical Strain Sensors and EMG Control”, IEEE Robotics Automation Magazine, vol. 23, no. 3, 2016, 55–64 DOI: 10.1109/MRA.2016.2582216.
  • [6] A. D. Marchese, C. D. Onal, and D. Rus, “Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators”, Soft Robotics, vol. 1, no. 1, 2014, 75–87 DOI: 10.1089/ soro.2013.0009.
  • [7] C. D. Onal, X. Chen, G. M. Whitesides, and D. Rus. “Soft Mobile Robots with On-Board Chemical Pressure Generation”. In: H. I. Christensen and O. Khatib, eds., Robotics Research, Springer Tracts in Advanced Robotics, Springer, Cham, 2017, 525–540 DOI: 10.1007 /978-3-319-29363-9_30
  • [8] R. Deimel and O. Brock, “A compliant hand based on a novel pneumatic actuator”. In: 2013 IEEE International Conference on Robotics and Automation, 2013, 2047–2053 DOI: 10.1109/ICRA.2013.6630851.
  • [9] F. Connolly, P. Polygerinos, C. J. Walsh, and K. Bertoldi, “Mechanical Programming of Soft Actuators by Varying Fiber Angle”, Soft Robotics, vol. 2, no. 1, 2015, 26–32 DOI: 10.1089/soro.2015.0001.
  • [10] Y. Elsayed, A. Vincensi, C. Lekakou, T. Geng, C. M. Saaj, T. Ranzani, M. Cianchetti, and A. Menciassi, “Finite Element Analysis and Design Optimization of a Pneumatically Actuating Silicone Module for Robotic Surgery Applications”, Soft Robotics, vol. 1, no. 4, 2014, 255–262 DOI: 10.1089/soro.2014.0016.
  • [11] J. Lee, W. Kim, W. Choi, and K. Cho, “Soft Robotic Blocks: Introducing SoBL, a Fast-Build Modularized Design Block”, IEEE Robotics Automation Magazine, vol. 23, no. 3, 2016, 30–41 DOI: 10.1109/ MRA.2016.2580479.
  • [12] K. Suzumori, S. Iikura, and H. Tanaka, “Development of flexible microactuator and its applications to robotic mechanisms”. In: 1991 IEEE International Conference on Robotics and Automation, 1991, 1622–1627 DOI: 10.1109/ ROBOT.1991.131850.
  • [13] K. Suzumori, “Flexible Microactuator: 1st Report, Static Characteristics of 3 DOF Actuator”, Transactions of the Japan Society of Mechanical Engineers Series C, vol. 55, no. 518, 1989, 2547–2552 DOI: 10.1299/ kikaic.55.2547.
  • [14] K. Suzumori, “Flexible Microactuator: 2nd Report, Dynamic Characteristics of 3 DOF Actuator”, Transactions of the Japan Society of Mechanical Engineers Series C, vol. 56, no. 527, 1990, 1887–1893 DOI: 10.1299/kikaic.56.1887.
  • [15] K. Suzumori, S. Iikura, and H. Tanaka, “Flexible microactuator for miniature robots”. In: IEEE Micro Electro Mechanical Systems, 1991, 204–209 DOI: 10.1109/MEMSYS.1991.114797.
  • [16] R.S. Caines, “Robotic fluid-actuated muscle analogue”, U.S. Patent 5,021,064, issued June 4,1991.
  • [17] R.T. Pack and M. Iskarous, “The use of the soft arm for rehabilitation and prosthetic”, Proceedings of the Annual Conference RESNA, 1994, 472–475.
  • [18] M. Hamerlain, “An anthropomorphic robot arm driven by artificial muscles using a variable structure control”. In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 1, 1995, 550–555 DOI: 10.1109/IROS.1995.525851.
  • [19] P. van der Smagt, F. Groen, and K. Schulten, “Analysis and control of a rubbertuator arm”, Biological Cybernetics, vol. 75, no. 5, 1996, 433–440 DOI: 10.1007/s004220050308.
  • [20] A. Alford, D. M. Wilkes, K. Kawamura, and R.T. Pack, “Flexible human integration for holonic manufacturing systems”. In: Proceedings of the World Manufacturing Congress, 1997, 53–62.
  • [21] D. M. Wilkes, R. T. Pack, A. Alford and K. Kawamura, “HuDL, A Design Philosophy for Socially Intelligent Service Robots”. In: Technical Report FS-97-02, The AAAI Press, Menlo Park, California, 1997, 140–145.
  • [22] M. E. Cambron, R. A. Peters II, D. M. Wilkes, J. L. Christopher and K. Kawamura, “Human-Centered Robot Design and the Problem of Grasping”, Proceedings of the the 3rd International Conference on Advanced Mechatronics ICAM’98 – Innovative Mechatronics for the 21st Century, August 3–6, Okayama, Japan, 1998, 191–196.
  • [23] G. Udupa, P. Sreedharan, and K. Aditya, “Robotic gripper driven by flexible microactuator based on an innovative technique”. In: 2010 IEEE Workshop on Advanced Robotics and its Social Impacts, 2010, 111–116 DOI: 10.1109/ARSO.2010.5680040.
  • [24] M. Cianchetti, A. Arienti, M. Follador, B. Mazzolai, P. Dario, and C. Laschi, “Design concept and validation of a robotic arm inspired by the octopus”, Materials Science and Engineering:C, vol. 31, no. 6, 2011, 1230–1239 DOI: 10.1016/j.msec.2010.12.004.
  • [25] M. O. Obaji and S. Zhang, “Investigation into the force distribution mechanism of a soft robot gripper modeled for picking complex objects using embedded shape memory alloy actuators”. In: 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2013, 84–90 DOI: 10.1109/RAM.2013.6758564.
  • [26] D. Sasaki, T. Noritsugu, M. Takaiwa, and Y. Kataoka, “Development of Pneumatic Wearable Power Assist Device for Human Arm “ASSIST””, Proceedings of the JFPS International Symposium on Fluid Power, vol. 2005, no. 6, 2005, 202–207 DOI: 10.5739/ isfp.2005.202.
  • [27] A. M. Tahir, M. Zoppi, and G. A. Naselli, “PASCAV Gripper: a Pneumatically Actuated Soft Cubical Vacuum Gripper”. In: International Conference on Reconfigurable Mechanisms and Robots (Re-MAR), 2018, 1–6 DOI: 10.1109/ REMAR.2018.8449863.
  • [28] J. Shintake, H. Sonar, E. Piskarev, J. Paik, and D. Floreano, “Soft pneumatic gelatin actuator for edible robotics”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, 6221–6226 DOI: 10.1109/IROS.2017. 8206525.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe8e9aaa-91aa-404c-9c5a-2b4fb875cbea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.