Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Recently, aluminum matrix syntactic foams (AMSFs) have become notably attractive for many different industrial areas like automotive, aerospace, construction and defense. Owing to their low density, good compression response and perfect energy absorption capacity, these advanced composite materials are also considered as strong alternatives to traditional particle reinforced composites and metal foams. This paper presents a promising probability of AMSF fabrication by means of industrial cold chamber die casting method. In this investigation, contrary to other literature studies restricted in laboratory scale, fully equipped custom-build cold chamber die casting machine was used first time and all fabrication steps were designed just as carried out in the real industrial high pressure casting applications. Main casting parameters (casting temperature, injection pressure, piston speed, filler pre-temperature and piston waiting time) were optimized in order to obtain flawless AMSF samples. The density alterations of the syntactic foams were analyzed depending upon increasing process values of injection pressure, piston speed and piston waiting time. In addition, macroscopic and microscopic investigations were performed to comprehend physical properties of fabricated foams. All these efforts showed almost perfect infiltration between filler particles at the optimized injection parameters.
Czasopismo
Rocznik
Tom
Strony
112--118
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
- Istanbul Technical University, Faculty of Mechanical Engineering, Istanbul, Turkey
autor
- Istanbul Technical University, Faculty of Mechanical Engineering, Istanbul, Turkey
Bibliografia
- [1] Licitra, L., Luong, D.D., Strbik III, O.M. & Gupta, N. (2015). Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams. Materials and Design. 66(B), 504-515. DOI: 10.1016/j.matdes. 2014.03.041.
- [2] Taherishargh, M., Belova, I.V., Murch, G.E. & Fiedler, T. (2015). Pumice/aluminum syntactic foam. Materials Science & Engineering A. 635, 102-108. DOI: 10.1016/j.msea.2015.03.061.
- [3] Szlancsik, A., Katona, B., Májlinger, K. & Orbulov, I.N. (2015). Compressive behavior and microstructural characteristics of iron hollow sphere filled aluminum matrix syntactic foams. Materials. 8(11), 7926-7937. DOI: 10.3390/ma8115432.
- [4] Mondal, D.P., Das, S., Ramakrishnan, N., & Uday Bhasker, K. (2009). Cenosphere filled aluminum syntactic foam made through stir-casting technique, Composites: Part A. 40(3), 279-288. DOI: 10.1016/j.compositesa.2008.12.006.
- [5] Lin, Y., Zhang , Q., Ma, X. & Wu, G. (2016). Mechanical behavior of pure Al and Al–Mg syntactic foam composites containing glass cenospheres. Composites: Part A. 87, 194-202. DOI: 10.1016/j.compositesa.2016.05.001.
- [6] Orbulov, I.N. & Dobránszky, J. (2008). Producing metal matrix syntactic foams by pressure infiltration. Periodica Polytechnica Mechanical Engineering. 52(1), 35-42. DOI: 10.3311/pp.me.2008-1.06.
- [7] Taherishargh, M., Belova, I.V., Murch, G.E. & Fiedler, T. (2014). Low-density expanded perlite–aluminium syntactic foam. Materials Science & Engineering A. 604, 127-134. DOI: 10.1016/j.msea.2014.03.003.
- [8] Al-Sahlani, K., Broxtermann, S., Lell, D. & Fiedler, T. (2018). Effects of particle size on the microstructure and mechanical properties of expanded glass-metal syntactic foams. Materials Science and Engineering A. 728, 80-87. DOI: 10.1016/j.msea.2018.04.103.
- [9] Dolata-Grosz, A., Dyzia, M. & Śleziona, J. (2008). Structure and technological properties of AlSi12 –(SiCp + Cgp) composites. Archives of Foundry Engineering. 8(1), 43-46.
- [10] Cholewa, M. & Kondracki, M. (2010). Cast composites with Al-matrix reinforced with intermetallic carbide phases. Archives of Foundry Engineering. 10(4), 95-99.
- [11] Niranjan, K. & Lakshminarayanan, P.R. (2013). Optimization of process parameters for in situ casting of Al/TiB2 composites through response surface methodology. Transactions of Nonferrous Metals Society of China. 23(5), 1269-1274. DOI: 10.1016/S1003-6326(13)62592-3.
- [12] Zhang, Q., Lee, P.D., Singh, R., Wu, G. & Lindley, T.C. (2009). Micro-CT characterization of structural features and deformation behavior of fly ash/aluminum syntactic foam. Acta Materialia. 57(10), 3003-3011. DOI: 10.1016/j.actamat.2009.02.048.
- [13] Tao, X.F., Zhang, L.P. & Zhao, Y.Y. (2009). Al matrix syntactic foam fabricated with bimodal ceramic microspheres. Materials & Design. 30(7), 2732-2736. DOI: 10.1016/j.matdes.2008.11.005.
- [14] Orbulov, I.N. (2013). Metal matrix syntactic foams produced by pressure infiltration-The effect of infiltration parameters. Materials Science & Engineering A. 583, 11-19. DOI: 10.1016/j.msea.2013.06.066.
- [15] Katona, B., Szlancsik, A., Tábic, T. & Orbulov, I.N. (2019). Compressive characteristics and low frequency damping of aluminum matrix syntactic foams. Materials Science & Engineering A. 739, 140-148. DOI: 10.1016/j.msea.2018.10.014.
- [16] Goel, M.D., Parameswaran, V. & Mondal, D.P. (2019). High strain rate response of cenosphere-filled aluminum alloy syntactic foam. Journal of Materials Engineering and Performance. 28, 4731-4739. DOI: 10.1007/s11665-019-04237-2.
- [17] Mondal, D.P., Goel, M.D., Upadhyay, V., Das, S., Singh, M. & Barnwal, A.K. (2018). Comparative study on microstructural characteristics and compression deformation behaviour of alumina and cenosphere reinforced aluminum syntactic foam made through stir casting technique. Transactions of the Indian Institute of Metals. 71, 567-577. DOI: 10.1007/s12666-017-1211-x.
- [18] Vishwakarma, A., Mondal, D.P., Birla, S., Das, S. & Prasanth N. (2017). Effect of cenosphere size on the dry sliding wear behaviour LM13-cenosphere syntactic foam. Tribology International. 110, 8-22. DOI: 10.1016/j.triboint.2017.01.041.
- [19] Akinwekomi, A.D., Adebisi, J.A. & Adediran, A.A. (2019). Compressive characteristics of aluminum-fly ash syntactic foams processed by microwave sintering. Metallurgical and Materials Transactions A. 50, 4257-4260. DOI: 10.1007/s11661-019-05347-1.
- [20] Balch, D.K. & Dunand, D.C. (2006). Load partitioning in aluminum syntactic foams containing ceramic microspheres. Acta Materialia. 54(6), 1501-1511. DOI: 10.1016/j.actamat.2005.11.017.
- [21] Gupta, N., Luong, D.D. & Cho, K. (2012). Magnesium matrix composite foams - Density, mechanical properties and applications. Metals. 2, 238-252. DOI: 10.3390/met2030238.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe87028f-18b6-424c-be8d-3387605cf2d8