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Abstract. This paper describes numerical solution of a reinforced concrete beam. The modelling was 
performed with the principles of the Finite Element Method (FEM). In order to validate the materials 
models: concrete and reinforcing steel, the results, obtained using the Newton-Raphson method 
with adaptive descent, were compared with experimental data. Simulations help to reduce the cost 
of experimental research through more efficient carrying out the tests. The solution of advanced 
problems of reinforced concrete members in the range of linear-elastic deformation and in the range 
of non-linear deformation leading to the failure is possible.
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1. Introduction

FEM software allows for the analysis of advanced computational problems 
of building structures such as simulating environmental impacts, non-linear 
buckling analysis, and work of reinforced concrete structures. Modern approach 
to the numerical analysis requires the formation of three-dimensional models taking 
into account the non-linear properties.

On the basis of the FEM and the finite difference method (FDM), the mesh free 
method (MFree), the extended finite element method (XFEM), and the numerical 
manifold method (NMM) are developed. These methods are numerical techniques 
based on the generalized finite element method (GFEM) and the partition of unity 
method (PUM). They extend the classical methods approach by enriching the solution 
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208 P. Smarzewski

space for solutions to differential equations with discontinuous functions. All these 
methods have advantage over conventional mesh-based approaches in dealing with 
problems involving large deformation and crack propagation [1]. XFEM procedures 
used in the simulation of crack propagation and contact detection were made available 
in the ABAQUS system. These problems are described in several studies [2-4].

The subject of the paper is a reinforced concrete beam composed of concrete 
and steel rebars arranged discretely modelled using ANSYS.

The aim of this paper is to model the mechanisms of failure in the reinforced 
concrete beam under static load, with physical non-linearity of materials: concrete and 
reinforcing steel. Concrete model for elastic-plastic material with the consideration 
for softening in compression and tension was applied. The original analyses for 
spatial reinforced concrete beam in the range of large displacement static were 
made. According to Eurocode 2, the method of nonlinear analysis concerning 
geometrical non-linearity can be used with non-linearity in a physical sense 
within the 2nd class theory [5].

Numerical analyses of C1-reinforced concrete beam, tested by Buckhouse [6], 
were carried out. The solution of the incremental equations of static equilibrium 
in FEM was conducted using Newton-Raphson method with adaptive descent.

2. Modelling of materials

2.1. 	 Modelling of concrete

The failure surface was presented with a five-parameter concrete model [7]. 
The failure criterion in a complex state of stress is described as follow:
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(1)

in which: F — the function of stresses conditions σxp, σyp, σzp in the direction of 
the Cartesian coordinate system xyz; S — failure surface dependent on the principal 
stresses σ1, σ2, σ3, where σ1 = max (σxp, σyp, σzp); σ3 = min (σxp, σyp, σzp) and σ1 ≥ σ2 ≥ σ3 
and five strength parameters. More information about the function of stresses and 
failure surface was presented in [8].

Figure 1 shows the failure surface in biaxial stress state transformed to σxp-σyp 
surface in the area of the highest non-zero normal stresses σxp, σyp. The states of 
material safe work are located inside the surface which evolution is represented by 
material hardening or softening. 
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209Numerical solution of reinforced concrete beam using Newton-Raphson method...

The equations for the stress-strain curve are useful in the structure analysis. 
Numerical solutions of reinforced concrete beams according to the equations given 
in [9] were characterized by lower ultimate deflection.

The idea of concrete behaviour in the uniaxial compression and tension is 
proposed (see Fig. 2). The stress-strain relation for the concrete is the combination 
of Desayi-Krishnan [10] and Stolarski [11] propositions. The elastic-plastic 
hardening in the uniaxial compression, the material softening and the test ultimate 
strains of Pecce, Fabbrocino [12], and Kamińska [13] were included.

Fig. 1. Failure surface

Fig. 2. Stress-strain relation for concrete in uniaxial: a) compression; b) tension 
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The elastic behaviour of concrete in compression is dependent on the reinforcement 
amount and concrete strength. Linear function is assumed for the  concrete 
compression to 33% of the ultimate uniaxial compressive strength (fc). Then concrete 
is worked in the phase of elastic-plastic with hardening up to fc. After reaching fc 
concrete is softened to 0.8fc at ultimate strain εcu.

In the studies, conducted by Kamińska [13], some beams were damaged by 
the concrete crushing. Strains reached 6‰ and they were two times higher than 
the ultimate strains measured on the samples. For this reason, the larger compressive 
strain is adopted in the numerical analysis. The concrete compressive strain εc1 at 
fc is 6‰ whereas the ultimate compressive strain εcu is 12‰.

The stress-strain relation in tension for the concrete is linear to the uniaxial 
tensile strength (ft). On the basis of Lyndon and Balendran [14], equal modulus of 
elasticity in compression and tension are assumed. After reaching ft, crack appears 
and brittle fracture occurs to the value equal or higher than 0.6ft. Tc parameter should 
be selected from 0.6 ≤ Tc ≤ 1. This stiffening effect is a gradual, smooth descent of 
ft to zero. Concrete strains is 0.8‰, Tc = 0.6, and 1.4‰, Tc = 1.

2.2. 	 Modelling of steel

Steel in a form of reinforcing bars is used in concrete structures. This reduces 
the problem of modelling of steel to the state of uniaxial stress. Model of elastic-
plastic material for the reinforcing steel with identical properties at compressive 
and tensile is applied. Linear-elastic model for the steel plates located in the support 
area and at the load point is assumed. Figure 3 presents the stress-strain relation 
for the reinforcing steel. 

Fig. 3. Stress-strain relation for reinforcing steel
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211Numerical solution of reinforced concrete beam using Newton-Raphson method...

3. Method of analysis

3.1. 	 Modelling of reinforced concrete beam

Model of the reinforced concrete beam corresponds to C1-beam tested by 
Buckhouse [6]. The dimensions, the reinforcement arrangement, and the load 
scheme are presented in Fig. 4.

Fig. 4. Dimensions, reinforcement arrangement, and load scheme of reinforced concrete beam  
(unit in mm) [6]

The model of concrete is defined by the  following parameters: uniaxial 
compressive strength fc  =  33.1 M Pa (tested by [6]), modulus of elasticity  
Ec = 57000fc

1/2 = 27228.1 MPa (according to ACI 318, fc [pound/inch2], [15]), 
uniaxial tension strength ft = 7.5fc

1/2 = 3.6 MPa (fc [pound/inch2], [15]), Poisson 
ratio νc = 0.2, ultimate strain in elastic-plastic hardening area εc1 = 6‰, ultimate 
strain in softening area εcu = 12‰, shear transfer coefficients for an open crack 
βt = 0.5 (estimated on the basis of Bangash [16], Hemmaty et al. [17, 18], Kachlakev 
et al. [19], Waszczyszyn [20], Wolanski [21] and Smarzewski [22]), shear transfer 
coefficients for a closed crack βc = 0.99.

The model of reinforcing steel and the model of supporting plates are defined 
by the following parameters: modulus of elasticity Es = 200 GPa, yield stress 
fy = 413.7 MPa, tensile strength fst = 550 MPa, Poisson ratio νs = 0.3, and cross-
sectional area of reinforcement As1 = 6.03 cm2.

Due to the symmetry in cross-section of the concrete beam and loading, only 
one quarter of the beam is modelled. The length, width, and height of the beam 
are 2360 mm, 127 mm, and 457 mm, respectively. Figure 5 presents the FE mesh 
for the C1 beam model, support and loading plate. The FE dimensions are given 
in the following order: length, width, and height. No mesh of the reinforcement is 
needed because elements are created in the modelling through the nodes created 
by the mesh of the concrete volume. 
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212 P. Smarzewski

An important step in FEM is the selection of the mesh density. A convergence 
of results is obtained when an adequate number of elements is used in a model. This 
is practically achieved when an increase in the mesh density has a negligible effect 
on the results. The 3720 element model, which was equivalent to 14880 elements 
in the full-beam model, was selected for the C1-beam model. The results started to 
converge with a model having approximately 12000 elements for the entire beam.

3.2.	 FE modelling of steel reinforcement

The discrete model for modelling of steel reinforcement in FEM for reinforced 
concrete beam is applied. In this study, perfect bond between materials is assumed. 

Fig. 5. Mesh of one quarter C1-beam model with marked control locations of displacement and strain 
(unit in mm)

Fig. 6. Discrete model for reinforcement in reinforced concrete beam
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213Numerical solution of reinforced concrete beam using Newton-Raphson method...

To provide the perfect bond, the reinforcement in the discrete model uses 3-D 
spar elements that are connected to concrete mesh nodes (Fig. 6). Consequently, 
the concrete and the reinforcement mesh share the same nodes and concrete occupies 
the same regions seized by reinforcement. A disadvantage to this model is that 
the concrete mesh is restricted by the location of the reinforcement and the volume of 
the steel reinforcement is not removed from the concrete volume. 3-D spar elements 
are used to create the flexural and the shear reinforcement. The tensile bars share 
the same nodes at the points that they intersect the shear stirrups.

3.3.	 Boundary conditions and loads

Displacement boundary conditions are needed to constrain the beam model. 
Boundary conditions are applied at the points of symmetry, and at the supports and 
loadings exist to ensure the model acting in the same way as the tested beam.

The symmetry boundary conditions are set. The beam model being used is 
symmetric about two planes. The support plate is modelled as a roller allowing one 
to rotate the beam along the plane xy. A single line of nodes on the plate are given 
constraints in ux = 0 and uz = 0 directions. The force F is applied across the entire 
centreline at each node on the steel plate. The boundary conditions for support and 
at the loading plate are illustrated in Fig. 7.

Fig. 7. Boundary conditions at support and loading plates

3.4.	 Newton-Raphson method with adaptive descent

Adaptive descent method studied by Eggert et al. [23] is based on the change 
of solution path approximating the limit point and reversing along the secant 
until obtaining the convergence of numerical solution. The stiffness matrix is 
written as:  
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	 [ ]{ } { } { },T a
i i

nr
iK u F F∆ = −  	 (2)

where:	 [Ki
T] — tangent stiffness matrix;

		  i — index corresponding to the number of the incremental step;
		  {Fi

nr} — vector of restoring loads representing the element internal loads 	
	 in the discretised system.
It is described as a sum of two matrixes:

		
	 [ ] [ ] (1 )[ ],T S T

iK K Kξ ξ= + −  	 (3)
	
		  [KS] — secant stiffness matrix;
		  [KT] — tangent stiffness matrix;
		  ξ — adaptive descent parameter.

The method requires defining the adaptive descent parameter ξ during iteration 
of equilibrium:

1.	A t the beginning of each substep tangent stiffness matrix is calculated 
according to Newton-Raphson’s method, with the consideration for adaptive 
descent parameter ξ = 0 in Eq. (3).

2.	 For subsequent iterations of equilibrium, the variability of the solution 
||{R}||2 = (Σ Ri

2)1/2 is monitored, for the unbalanced load vector {R}={Fa} 
— {Fnr} — the right side of Eq. (2).

When the norm grows, the disconvergence of the solution is probable. When 
it falls, the convergence of solution is possible. The adaptive descent parameter ξ is 
balanced while making iteration until the required convergence of the numerical 
solution is reached. The secant stiffness matrix is generated as a result of solving 
non-linear tasks concerning plasticity, structure stiffness with large displacements 
or concrete crushing.

In this study, for the reinforced concrete solid elements, convergence criteria were 
based on displacement. It was found that convergence of solutions was difficult to achieve 
due to the non-linear behaviour of reinforced concrete. Therefore, the convergence 
tolerance limits were increased to a maximum of 5 times the default tolerance limits 
of 5% for displacement checking in order to obtain convergence of the solutions.

4. Numerical results and discussion

4.1.	 Cracking analysis

Figure 8 shows the development of the tensile force in the steel. In the smeared 
cracking approach, the smeared cracks spread over the region where the principal 
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215Numerical solution of reinforced concrete beam using Newton-Raphson method...

tensile stresses in the concrete elements exceed the ultimate tensile strength (see 
Fig. 8a, 8b). The stiffness of the cracked concrete elements in the FE model reduces 
to zero, so they cannot resist tension. Therefore, the tension in the steel FE does 
not vary as in the actual beam. The tensile force in a steel element is constant 
across the element (see Fig. 8c). For this reason, FEA-strains could be higher than 
the measured strains. This could also explain the difference in the steel yielding 
loads between the FE model and the experimental results. 

Fig. 8. Development of tensile force in steel: (a) smeared cracking pattern; (b) cracked concrete and 
steel rebar element; (c) tensile force in steel elements

Figure 9 presents the smeared crack patterns obtained at different load. Flexural 
cracks increases in the constant moment region, up to 31 kN, and the beam begins 
cracking out towards the support plate. Significant flexural cracking occurs in the beam 
at 57.8 kN. Diagonal cracks are beginning to form in the model shear-span after 
reinforcement yielding at 64 kN. More cracks have now formed in the constant 
moment region. Cracking has reached the top of the beam.

At load 70.9 kN, the model beam no longer can support additional load as indicated 
by convergence failure. In the test [6], control beam failed at load 72.6 kN. The ultimate 
load of the FE model beam was within 3% of the ultimate load of the control beam.
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4.2.	 Strain and stress analysis

The FEA compressive strain data for concrete are collected from the point 
placed on the top face of the beam as shown in Fig. 5. The tensile strain data for 
main steel reinforcement are collected on the φ16 mm steel rebar at mid-span (see 
Fig. 5). Figure 10a presents the load-compressive strain curve for the concrete from 
the FEA in the C1-beam. Figure 10b shows the load-tensile strain plot for the main 
steel reinforcing at mid-span from the FEA in the C1-beam.

Fig. 9. Smeared crack patterns

Fig. 10. Load-strain curves for: a) compressive concrete; b) tensile main steel rebar
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218 P. Smarzewski

Figure 11 shows the development of normal stresses σx for the left quarter of 
the model beam. The evolutions of stresses are presented by beam rotation of 20° 
around the x-axis, in order to show their changes in the top face of the beam.

Under the load F = 24 kN, the development of stress corresponding to the elastic 
behaviour of the beam is observed. For this load one can observe a tension in concrete 
below the neutral axis in the plasticity area. Its influence on the total load capacity 
is insignificant and frequently neglected in calculations, especially at high cross-
sectional area of reinforcement. Yet, for a low cross-sectional area of reinforcement, 
its influence is slightly higher, however, it is neglected due to the possibility of 
occurring incidental crack. Below the plasticity area in the constant moment region, 
one can notice a small cracking area. After the increase in the load to F = 31.2 kN, 
the cracking area and concrete plasticity area increase. Between smeared cracks 
there are significant discrepancies in stress distribution. With the increase in load, 
one can observe the approximation of neutral axis to the top face of the beam. 
At the level of F = 40 kN, the increase in the plasticity area can be observed. Neutral 
axis is the boundary between cracked and un-cracked planes. The increase in neutral 
axis in the 3rd phase is experimentally proved. At the load of 57.8 kN, one can 
see the development of stress at the support. For the load of F = 68.9 kN, one can 
observe gradual development of stress upwards. It is also possible to notice further 
development of compressive concrete plasticity in the constant moment region. For 
the load of F = 70.9 kN, the beam load capacity was reached and the concrete was 
locally crushed at the top face of the model beam, similarly to tested beam [6].

Fig. 12. Load-deflection curves at C1-beam mid-span
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4.3.	 Load-deflection analysis

Figure 12 illustrates the comparison of the load-deflection curves from the FE 
analysis with the experimental data at mid-span for C1-beam. In the linear range 
and after cracking, the load-deflection curve form the FEA is stiffer than that from 
the test results. The first cracking load for the FEA is higher from the experimental 
results by 12%. Steel reinforcement yielding is illustrated by a sudden stiffness 
decrease in the beam on the plot load-deflection. Ultimate deflection at beam mid-
span of 93 mm from the model is higher than the experimental ultimate deflection 
of 92.7 mm by only 0.3%. The FEA agrees well with the experimental data for 
the C1-beam.

Summary

The paper evaluates the FEM effectiveness for analysing non-linear behaviour 
of reinforced concrete beam modelled as spatial structural member, without 
simplifications regarding technical assumptions of a beam theory.

The method of strain analysis was based on the FEM rules. Perfect bond between 
steel rebars and concrete was assumed. The smeared crack model for concrete 
and discrete reinforcement was used. The solution was obtained by quasi-Newton 
numerical method. 

On the basis of reinforced concrete beam under static load it was presented 
a comparison of the FEA with the experimental results. The comparison proved 
the correctness of the assumptions concerning the concrete model, steel models 
and numerical analysis to solve non-linear equilibrium equations. The modelling 
of reinforced concrete beams reflects non-linear response of the flexure members 
under loading, up to failure. Solving non-linear structural member with the use of 
Newton-Raphson method with adaptive descent can precisely locate the strain states 
and can locate the decrease for response curve after steel rebars yielding.

Simulations can contribute to the reduction of research costs by more effective 
experiment planning and can limit the number of tested samples. They allow for 
the analysis of complex structure behaviour in the entire deformation range. 

Received November 13 2012. Revised October 2015.
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P. Smarzewski

Rozwiązanie numeryczne belki żelbetowej metodą Newtona-Raphsona  
ze spadkiem adaptacyjnym

Streszczenie. W pracy przedstawiono rozwiązanie numeryczne belki żelbetowej. Modelowanie prze-
prowadzono z wykorzystaniem zasad Metody Elementów Skończonych (MES). W celu zweryfikowania 
modeli materiałowych: betonu i stali zbrojeniowej, porównano otrzymane wyniki obliczeń numerycz-
nych metodą Newtona-Raphsona ze spadkiem adaptacyjnym, z wynikami doświadczalnymi. Symulacje 
mogą pomóc w obniżeniu kosztów badań doświadczalnych poprzez efektywniejsze planowanie ekspe-
rymentów. Możliwe jest rozwiązanie złożonych problemów zachowania konstrukcyjnych elementów 
żelbetowych w zakresie odkształceń liniowo-sprężystych i nieliniowych aż do zniszczenia.
Słowa kluczowe: mechanika konstrukcji betonowych, metoda elementów skończonych, belka żelbe-
towa, spadek adaptacyjny
DOI: 10.5604/12345865.1186371
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