PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A Novel Network RTK Technique for Mobile Platforms: Extending High-Precision Positioning to Offshore Environments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Network Real-Time Kinematic (NRTK) positioning, as the most mature real-time high-precision positioning technology, is widely recognized for its centimetre-level accuracy, operational efficiency, and extensive application potential. However, conventional NRTK systems rely on reference stations anchored to bedrock-based infrastructure, limiting their coverage to terrestrial areas within Continuous Operating Reference Station (CORS) networks. This architectural limitation renders conventional NRTK inapplicable for offshore and marine environments. To overcome this geographical constraint, we propose an innovative NRTK framework for mobile platforms featuring (1) simultaneous estimation of atmospheric delays and baseline dynamics to get precise relative coordinate movements, (2) the regularization method is applied to de-correlate the positional and atmospheric parameters and the regularization coefficients are optimized by mean square error minimization, and (3) integration of Precise Point Positioning (PPP) at a main base station to maintain an absolute position reference for the network. Experimental validation using Hong Kong's terrestrial CORS network demonstrates that the proposed marine-adapted system achieves positioning accuracy comparable to conventional bedrock-based NRTK, with three-dimensional (ENU) errors measuring (2.90, 3.22, 4.32) cm and (2.90, 2.88, 6.70) cm in two operational scenarios. This methodological advancement enables the deployment of buoy-based NRTK systems in marine environments, with significant implications for maritime applications including port traffic management, fishing fleet navigation, and offshore resource exploration. By extending NRTK's operational domain beyond terrestrial boundaries, our technique not only enhances positioning reliability for marine operations but also creates new paradigms for oceanic resource management.
Twórcy
autor
  • The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong
  • The Hong Kong Polytechnic University, Hong Kong
autor
  • The Hong Kong Polytechnic University, Hong Kong
autor
  • The Hong Kong Polytechnic University, Hong Kong
autor
  • The Hong Kong Polytechnic University, Hong Kong
Bibliografia
  • [1] El-Sheimy, N., Lari, Z. ”GNSS Applications in Surveying and Mobile Mapping,” in Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications, vol. 2, pp. 1711–1733, 2020. doi: 10.1002/9781119458555.ch55.
  • [2] Guo, J., Li, X., Li, Z., Hu, L., Yang, G., Zhao, C., ... Ge, M. ”Multi-GNSS precise point positioning for precision agriculture,” Precision Agric., vol. 19, pp. 895–911, 2018. doi: 10.1007/s11119-018-9563-8.
  • [3] Li, X., Guo, B., Lu, C., Ge, M., Wickert, J., Schuh, H. ”Real-time GNSS seismology using a single receiver,” Geophys. J. Int., vol. 198, no. 1, pp. 72–89, 2014. doi: 10.1093/gji/ggu113.
  • [4] Joubert, N., Reid, T. G., Noble, F. ”Developments in modern GNSS and its impact on autonomous vehicle architectures,” in Proc. IEEE Intell. Veh. Symp. (IV), pp. 2029–2036, 2020. doi: 10.1109/IV47402.2020.9304840.
  • [5] Yu, K., Rizos, C., Burrage, D., Dempster, A. G., Zhang, K., Markgraf, M. ”An overview of GNSS remote sensing,” EURASIP J. Adv. Signal Process., 2014. doi: 10.1186/1687-6180-2014-134.
  • [6] Jin, S., Feng, G. P., Gleason, S. ”Remote sensing using GNSS signals: Current status and future directions,” Adv. Space Res., vol. 47, no. 10, pp. 1645–1653, 2011. doi: 10.1016/j.asr.2011.01.036.
  • [7] O. Montenbruck et al., ”The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)–achievements, prospects and challenges,” Adv. Space Res., vol. 59, no. 7, pp. 1671–1697, 2017. doi: 10.1016/j.asr.2017.01.011.
  • [8] J. Wang, ”Stochastic Modeling for Real-Time Kinematic GPS/GLONASS Positioning,” Navigation, vol. 46, no. 4, pp. 297–305, 1999. doi: 10.1002/j.2161-4296.1999.tb02416.x.
  • [9] N. Shen et al., ”Short-term landslide displacement detection based on GNSS real-time kinematic positioning,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–14, 2021. doi: 10.1109/TIM.2021.3055278.
  • [10] C. Kee, B. W. Parkinson, and P. Axelrad, ”Wide area differential GPS,” Navigation, vol. 38, no. 2, pp. 123–145, 1991. doi: 10.1002/j.2161-4296.1991.tb01720.x.
  • [11] L. Gauthier et al., ”EGNOS: the first step in Europe’s contribution to the global navigation satellite system,” ESA Bull., no. 105, pp. 35–42, 2001.
  • [12] X. Chen et al., ”Trimble RTX, an innovative new approach for network RTK,” in Proc. 24th Int. Tech. Meeting Sat. Div. Inst. Navig. (ION GNSS 2011), pp. 2214–2219, 2011.
  • [13] P. Steigenberger et al., ”Galileo orbit and clock quality of the IGS Multi-GNSS Experiment,” Adv. Space Res., vol. 55, no. 1, pp. 269–281, 2015. doi: 10.1016/j.asr.2014.06.030.
  • [14] F. Yang et al., ”Performance evaluation of kinematic BDS/GNSS real-time precise point positioning for maritime positioning,” J. Navig., vol. 72, no. 1, pp. 34–52, 2019. doi: 10.1017/S0373463318000644.
  • [15] P. Enge et al., ”Wide area augmentation of the global positioning system,” Proc. IEEE, vol. 84, no. 8, pp. 1063–1088, 1996. doi: 10.1109/JPROC.1996.852670.
  • [16] X. Zhang, X. Li, and F. Guo, ”Satellite clock estimation at 1 Hz for realtime kinematic PPP applications,” GPS Solut., vol. 15, pp. 315–324, 2011. doi: 10.1007/s10291-010-0191-7.
  • [17] A. Mart´ın, A. B. Anquela, A. Dimas-Pag´es, and F. Cos-Gay´on, ”Validation of performance of real-time kinematic PPP: A possible tool for deformation monitoring,” Measurement, vol. 69, pp. 95–108, 2015. doi: 10.1016/j.measurement.2015.03.026.
  • [18] J. Geng, F. N. Teferle, X. Meng, and A. H. Dodson, ”Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning,” Adv. Space Res., vol. 47, no. 10, pp. 1664–1673, 2011. doi: 10.1016/j.asr.2010.03.030.
  • [19] R. M. Alkan, S. Erol, V. ˙Ilc¸i, and ˙I. M. Ozulu, ”Comparative analysis of real-time kinematic and PPP techniques in dynamic environment,” Measurement, vol. 163, p. 107995, 2020. doi: 10.1016/j.measurement.2020.107995.
  • [20] S. Erol, R. M. Alkan, ˙I. M. Ozulu, and V. ˙Ilc¸i, ”Performance analysis of real-time and post-mission kinematic precise point positioning in marine environments,” Geodesy and Geodynamics, vol. 11, no. 6, pp. 401–410, 2020. doi: 10.1016/j.geog.2020.09.002.
  • [21] M. El-Diasty and M. Elsobeiey, ”Precise Point Positioning Technique with IGS Real-Time Service (RTS) for Maritime Applications,” Positioning, vol. 6, pp. 71–80, 2015. doi: 10.4236/pos.2015.64008.
  • [22] R. M. Alkan, M. H. Saka, ˙I. M. Ozulu, and V. ˙Ilc¸i, ”Kinematic precise point positioning using GPS and GLONASS measurements in marine environments,” Measurement, vol. 109, pp. 36–43, 2017. doi: 10.1016/j.measurement.2017.05.054.
  • [23] F. Yang, L. Li, L. Zhao, and C. Cheng, ”GPS/BDS Real-Time Precise Point Positioning for Kinematic Maritime Positioning,” in Proc. China Sat. Nav. Conf. (CSNC), vol. III, pp. 295–307, Springer Singapore, 2017.
  • [24] Y. Yang, W. Gao, S. Guo, Y. Mao, and Y. Yang, ”Introduction to BeiDou-3 navigation satellite system,” Navigation, vol. 66, no. 1, pp. 7–18, 2019. doi: 10.1002/navi.291.
  • [25] N. Tunalioglu, T. Ocalan, and A. H. Dogan, ”Precise point positioning with GNSS raw measurements from an android smartphone in marine environment monitoring,” Marine Geodesy, vol. 45, no. 3, pp. 274–294, 2022. doi: 10.1080/01490419.2022.2027831.
  • [26] Dong, Y., Zhang, L., Wang, D., Li, Q., Wu, J., Wu, M. (2020). Low-latency, high-rate, high-precision relative positioning with moving base in real time. GPS Solut., 24, 1–13. doi: 10.1007/s10291-020-0969-1.
  • [27] Hou, X., Fang, K., Wang, Z., Li, Q., Fang, J. (2020, January). Research on ambiguity solution integrity monitoring for moving base RTK. In Proceedings of the 2020 International Technical Meeting of The Institute of Navigation (pp. 468–486). doi: 10.33012/2020.17156.
  • [28] Wang, Z., Hou, X., Dan, Z., Fang, K. (2023). Adaptive Kalman filter based on integer ambiguity validation in moving base RTK. GPS Solut., 27(1), 34. doi: 10.1007/s10291-022-01367-4.
  • [29] Lygouras, E., Gasteratos, A. (2021). A novel moving-base RTK-GPS-Based wearable apparatus for precise localization of humans in peril. Microprocess. Microsyst., 82, 103833. doi: 10.1016/j.micpro.2021.103833.
  • [30] Kim, B. G., Kim, D., Song, J., Kee, C. (2024). Expanding Network RTK Coverage Using an Ionospheric-Free Combination and Kriging for Tropospheric Delay. NAVIGATION: J. Inst. Nav., 71(3). doi: 10.33012/navi.662.
  • [31] A. H. Dodson, W. Chen, N. T. Penna, and H. C. Baker, ”GPS estimation of atmospheric water vapour from a moving platform,” J. Atmos. Solar-Terrestrial Phys., vol. 63, no. 12, pp. 1331–1341, 2001. doi: 10.1016/S1364-6826(00)00251-0.
  • [32] T. Ford, M. Hardesty, and M. Bobye, ”Helicopter ship board landing system,” in Proc. 18th Int. Tech. Meeting Sat. Div. Inst. Navig. (ION GNSS 2005), Long Beach, CA, USA, Sep. 2005, pp. 979–988.
  • [33] B. Li, Z. Zhang, N. Zang, and S. Wang, ”High-precision GNSS ocean positioning with BeiDou short-message communication,” J. Geod., vol. 93, pp. 125–139, 2019. doi: 10.1007/s00190-018-1145-z.
  • [34] J. Geng, F. N. Teferle, X. Meng, and A. H. Dodson, ”Kinematic precise point positioning at remote marine platforms,” GPS Solut., vol. 14, pp. 343–350, 2010. doi: 10.1007/s10291-009-0157-9.
  • [35] K. He, D. Weng, S. Ji, Z. Wang, W. Chen, and Y. Lu, ”Ocean real-time precise point positioning with the BeiDou short-message service,” Remote Sens., vol. 12, no. 24, p. 4167, 2020. doi: 10.3390/rs12244167.
  • [36] T. Trombetti et al., ”On the seafloor horizontal displacement from GPS and compass data in the Campi Flegrei caldera,” J. Geod., vol. 97, no. 6, p. 62, 2023. doi: 10.1007/s00190-023-01751-z.
  • [37] M. Sato et al., ”Improvement of GPS/acoustic seafloor positioning precision through controlling the ship’s track line,” J. Geod., vol. 87, no. 9, pp. 825–842, 2013. doi: 10.1007/s00190-013-0649-9.
  • [38] S. Xue, Y. Yang, and W. Yang, ”Single-differenced models for GNSS-acoustic seafloor point positioning,” J. Geod., vol. 96, no. 5, p. 38, 2022. doi: 10.1007/s00190-022-01613-0.
  • [39] S. Ji et al., ”High-precision Ocean navigation with single set of BeiDou short-message device,” J. Geod., vol. 93, pp. 1589–1602, 2019. doi: 10.1007/s00190-019-01273-7.
  • [40] L. C. Tsai et al., ”Coastal sea-surface wave measurements using software-based GPS reflectometers in Lanyu, Taiwan,” GPS Solut., vol. 25, no. 4, p. 133, 2021. doi: 10.1007/s10291-021-01167-2.
  • [41] Li, Z., Guo, F., Zhang, X., Guo, Y., Zhang, Z. (2024). Analysis of factors influencing significant wave height retrieval and performance improvement in spaceborne GNSS-R. GPS Solut., 28(2), 64. doi: 10.1007/s10291-023-01605-3.
  • [42] Li, Z., Guo, F., Zhang, X., Zhang, Z., Zhu, Y., Yang, W., ... Yue, L. (2024). Integrating spaceborne GNSS-R and SMOS for sea surface salinity retrieval using artificial neural network. GPS Solut., 28(4), 1–12. doi: 10.1007/s10291-024-01709-4.
  • [43] Vergados, P., Krishnamoorthy, S., Martire, L., Mrak, S., Komj´athy, A., Morton, Y. T. J., Vilibi´c, I. (2023). Prospects for meteotsunami detection in earth’s atmosphere using GNSS observations. GPS Solut., 27(4), 169. doi: 10.1007/s10291-023-01492-8.
  • [44] Sch¨one, T., Pandoe, W., Mudita, I., Roemer, S., Illigner, J., Zech, C., Galas, R. (2011). GPS water level measurements for Indonesia’s Tsunami Early Warning System. Nat. Hazards Earth Syst. Sci., 11(3), 741–749. doi: 10.5194/nhess-11-741-2011.
  • [45] Kim, G., Park, W., Park, B. (2024, January). Moving Baseline RTK-based Ground Vehicle-Drone Combination System. In Proceedings of the 2024 International Technical Meeting of The Institute of Navigation (pp. 630–636). doi: 10.33012/2024.19577.
  • [46] Li, B., Feng, Y., Shen, Y., Wang, C. (2010). Geometry-specified troposphere decorrelation for sub centimeter real-time kinematic solutions over long baselines. J. Geophys. Res. Solid Earth, 115(B11). doi: 10.1029/2010JB007549.
  • [47] Morozov, V. A. (1984). Methods for solving incorrectly posed problems. Springer Science Business Media. doi: 10.1112/blms/17.6.621.
  • [48] Golub, G. H., Heath, M., Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21(2), 215–223.
  • [49] Hansen, P. C. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 34(4), 561–580. doi: 10.1137/1034115.
  • [50] Hansen, P. C., O’Leary, D. P. (1993). The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput., 14(6), 1487–1503. doi: 10.1137/0914086.
  • [51] Xu, P. (1998). Mixed Integer Geodetic Observation Models and Integer Programming with Applications to GPS Ambiguity Resolution. J. Geodetic Soc. Jpn., 44(3), 169–187. doi: 10.11366/sokuchi1954.44.169.
  • [52] Li, B. (2010). Theory and Method of Parameter Estimation for Mixed integer GNSS Stochastic and Function Models. Tongji University, PhD Thesis, pp. 57–58.
  • [53] Shen, Y., Xu, H. (2002). Spectral decomposition formula of regularization solution for ill-posed equation. J. Geodesy Geodynamics, 22(3), 10–14. doi: 10.14075/j.jgg.2002.03.004.
Uwagi
Pełne imiona podano na stronie internetowej czasopisma w "Authors in other databases."
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe79920f-a7d8-48aa-b75d-9486bef3dfc5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.