Identyfikatory
Warianty tytułu
Identyfikacja obszarów zużycia kawitacyjnego wewnętrznych powierzchni przewodów o zmiennej średnicy z wykorzystaniem komputerowego modelowania przepływu cieczy
Języki publikacji
Abstrakty
The paper presents applicability of the computer system to model and simulate fluid and gas flow to assess surface cavitation wear. Abstract tube models with a decreasing inside diameter were developed and fluid flow with varying flow velocities was simulated. This facilitated identification of areas particularly at risk of cavitation wear. Results of simulation analyses were verified by comparing them with actual empirical results concerning cavitation erosion of tubing materials.
W pracy przedstawiono możliwości wykorzystania systemów komputerowego modelowania oraz symulowania przepływu cieczy i gazów do oceny stopnia zużycia kawitacyjnego powierzchni. Opracowano abstrakcyjne modele przewodów o zmniejszającej się średnicy wewnętrznej oraz symulowano przepływ cieczy z różnymi prędkościami. Pozwoliło to wyznaczenie obszarów szczególnie narażonych na erozję kawitacyjną. Dokonano weryfikacji wyników analizy symulacyjnej porównując je z rzeczywistymi wynikami badań erozji kawitacyjnej materiałów do budowy przewodów.
Rocznik
Tom
Strony
92--103
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
- Uniwersytet Przyrodniczy w Poznaniu Instytut Inżynierii Biosystemów ul. Wojska Polskiego 50, 60-637 Poznań, Poland
autor
- Uniwersytet Przyrodniczy w Poznaniu Instytut Inżynierii Biosystemów ul. Wojska Polskiego 50, 60-637 Poznań, Poland
Bibliografia
- [1] Behbahani-Nejad M., Changizian M. Reduced-order modeling of three-dimensional unsteady partial cavity flows. Journal of Fluids and Structures, 2015, 52, 1–15.
- [2] Brinkhorsta S., von Lavantea E., Wendtb G.: Experimental and numerical investigation of the cavitation-induced choked flow in a herschel venturi-tube. Flow Measurement and Instrumentation, 2017, 54, 56–67.
- [3] Cioncolini A., Scenini F., Duff J., Szolcek M., Curioni M.: Experimental Thermal and Fluid Science Experimental Thermal and Fluid Science, 2016, 74, 49–57.
- [4] Dular M., Griessler-Bulc T., Gutierrez-Aguirre I., Heath E., Kosjek T., Klemenćić A. K., Oder M., Petkovšek M., Raćki N., Ravnikar M., Šarc A., Širok B., Zupanc M., Zitnik M., Kompare B.: Use of hydrodynamic cavitation in (waste)water treatment. Ultrasonics Sonochemistry, 2016, 29, 577–588.
- [5] Gao Sh., Zhao W., Lin H., Yang F., Chen X.: Feature suppression based CAD mesh model simplification. ComputerAided Design, 2010, 42, 1178–1188.
- [6] Hughes T.J.R., Cottrell J.A., Bazilevs Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg., 2005, 194, 4135–4195.
- [7] Lai Y., Hua S.-M., Martin R.R., Rosin P.L.: Rapid and effective segmentation of 3D models using random walks. Computer Aided Geometric Design, 2009, 26, 665–679.
- [8] Lavoue G., Dupont F., Baskurt A.: A new CAD mesh segmentation method, based on curvature tensor analysis. Comput-Aided Des., 2005, 37(10), 975–87.
- [9] Lee Y., Lee S., Shamir A., Cohen-Or D., Seidel H.: Mesh scissoring with minima rule and part salience. Computer Aided Geometric Design, 2005, 22, 444–465.
- [10] Li D.G., Chen D.R., Liang P. Enhancement of cavitation erosion resistance of 316 L stainless steel by adding molybdenum. Ultrasonics Sonochemistry, 2017, 35, 375–381.
- [11] Niederhofer P., Huth S., Theisen W.: Cavitation erosion and hydroabrasion resistance of cold work tool steels produced by powder metallurgy. Wear, 332-333, 2015, 1059–1069.
- [12] Orzechowski Z., Prywer J., Zarzycki R.: Mechanika płynów w inżynierii środowiska. WNT Warszawa, 1997.
- [13] Rockwella D., Lina J.-C., Oshkaia P., Reissa M., Pollack M.: Shallow cavity flow tone experiments: onset of locked-on states. Journal of Fluids and Structures, 2003, 17, 381–414.
- [14] Steller K.: Pojęcia podstawowe ze szczególnym uwzględnieniem pojęć dotyczących maszyn hydraulicznych. Zeszyty Naukowe IMP PAN, 1982, 140.
- [15] Steller K.: O mechanizmie niszczenia materiałów podczas kawitacji. Zeszyty Naukowe IMP PAN, 1983, 175.
- [16] Sunil V.B., Pande S.S.: Automatic recognition of features from freeform surface CAD models. Computer-Aided Design, 2008, 40, 502–517.
- [17] Thiruvegadam A.: On the modeling Cavitation Damage. Journal Ship Research, September 1969.
- [18] Tran T.D., Nennemann B., Vu T.C. Guibault F.: Investigation of Cavitation Models for Steady and Unsteady Cavitating Flow Simulation. International Journal of Fluid Machinery and Systems, October-December 2015, Vol. 8 (4), 240–253.
- [19] White D.R., Saigal S., Owen S.J.: Meshing complexity of single part CAD models. In: Proceedings of the 12th international meshing roundtable conference, 2003.
- [20] Woo H., Kang E., Wang S., Lee K.H.: A new segmentation method for point cloud data. International Journal of Machine Tools & Manufacture, 2002, 42. 167–178.
- [21] Wójs K.: Kawitacja w cieczach o różnych właściwościach reologicznych. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2004.
- [22] Varady T., Facello M.A., Terek Z.: Automatic extraction of surface structures in digital shape reconstruction. ComputerAided Design, 2007, 39, 379–388.
- [23] Vu T., Koller M., Gauthier M., Deschênes C.: Flow simulation and efficiency hill chart prediction for a Propeller turbine. International Journal of Fluid Machinery and Systems, April-June 2011, Vol. 4(2), 243–254.
- [24] Xiao D., Lin H., Xian Ch., Gao Sh.: CAD mesh model segmentation by clustering. Computers and Graphics, 2011, 35, 685–691.
- [25] Zhang Y.-Y., Sun X.-J., Huang D.-G.: A Numerical Study on Cavitation Suppression Using Local Cooling. International Journal of Fluid Machinery and Systems, October-December 2010, Vol. 3(4), 292–300.
- [26] Zhu L., Li., Martin R.R.: Direct simulation for CAD models undergoing parametric modifications. Computer-Aided Design, 2016, 78, 3–13.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe798adc-949f-4f9c-90bf-f3d12b14c8ac