PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Different Organic Additives on Surface Morphology and Microstructure of Zn-Mo Coatings Electrodeposited from Citrate Baths

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of cationic, anionic and nonionic surface active additives, organic compounds and polymers on the electrodeposition of Zn-Mo coatings on steel substrate and detailed characterization in chosen optimal conditions was studied. The influence of polyethylene glycol (PEG) various concentration, sodium dodecyl sulphate (SDS), triton X-100, d-sorbitol, cetyl trimethyl ammonium bromide (CTAB), thiourea and disodium ethylenediaminetetraacetate (EDTA) on the electrodeposition process was examined. The composition of deposits was defined by wavelength dispersive X-ray fluorescence spectrometry (WDXRF). Results has shown that the current efficiency of the electrodeposition of Zn-Mo coatings is 71.4%, 70.7%, 66.7% for 1.5 g/dm3 PEG 20000, 0.1 g/dm3 Triton X-100 and 0.75 M D-sorbitol respectively. The surface topography and roughness of selected coatings on steel was investigated by atomic force microscopy (AFM). The attendance of D-sorbitol of 0.75 M in the solution cause clear reduction of grain size and the value of roughness parameter (Ra) in relation to SDS, PEG, Triton X-100 and the sample prepared without the additives. The morphology of electrodeposited layers was studied by scanning electron microscopy (SEM). The addition of selected additives to the electrolytic bath results in the formation of smoother, brighter and more compact Zn-Mo coatings in comparison to layers obtained from similar electrolytes but without the addition of surfactants. The optimal concentration of the most effective additives such as PEG 20000, Triton X-100 and D-sorbitol is 1.5 g/dm3, 0.1 g/dm3, 0.75 M respectively.
Twórcy
autor
  • Institute of Metallurgy and Material Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków, Poland
  • Institute of Metallurgy and Material Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków, Poland
autor
  • Institute of Metallurgy and Material Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków, Poland
autor
  • Institute of Metallurgy and Material Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków, Poland
autor
  • Institute of Metallurgy and Material Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków, Poland
Bibliografia
  • [1] N. Eliaz, E. Gileadi, Modern Aspects of Electrochemistry. 42, Springer, New York (2008).
  • [2] H. Kazimierczak, P. Ozga, R. P. Socha, Electrochim. Acta. 104, 378-390 (2013).
  • [3] R. Winand, J. Appl. Electrochem. 21, 377-385 (1991).
  • [4] L. E. Morón, A. Méndez, F. Castañeda, J. G. Flores, L. Ortiz-Frade, Y. Meas, G. Trejo, Surf. Coat. Tech. 205, 4985-4992 (2011).
  • [5] J. C. Ballesteros, P. D'ıaz-Arista, Y. Meas, R. Ortega, G. Trejo, Electrochim. Acta. 52, 3686-3696 (2007).
  • [6] M. S. Pereira, L. L. Barbosa, C.A.C. Souza, A.C.M. De Moraes, I. A. Carlos, J. Appl. Electrochem. 36, 727-732 (2006).
  • [7] H. Kazimierczak, Electrodeposition of Zn-Mo Layers from aqueous citrate solution, Polska Akademia Nauk, Kraków (2014).
  • [8] G. Trejo, H. Ruiz, R. Ortega Borges, Y. Meas, J. Appl. Electrochem. 31, 689-692 (2001).
  • [9] A. Sharma, K. Das, H. J. Fecht, S. Das, Appl. Surf. Sci. 314, 516-522 (2014).
  • [10] C. M. Praveen Kumar, T. V. Venkatesha, K. G. Chandrappa, Surf. Coat. Tech. 206, 2249-2257 (2012).
  • [11] H. Usui, Electrochim. Acta. 56, 3934-3940 (2011).
  • [12] M. F. Carvalho, E. P. Barbano, I. A. Carlos, Electrochim. Acta. 109, 798-808 (2013).
  • [13] I. L. Lehr, S. B. Saidman, Appl. Surf. Sci. 258, 4417-4423 (2012).
  • [14] X. Zhang, J. Liang, B. Liu, Z. Peng, Colloid. Surface. A. 454, 113-118 (2014).
  • [15] A. Gomes, M. I. da Silva Pereira, Electrochim. Acta. 51, 1342-1350 (2006).
  • [16] X. Qin, G. Shao, L. Zhao, Mater. Sci. Eng. B-Adv. 177, 1678-1681 (2012).
  • [17] M. F. Carvalho, I. A. Carlos, Electrochim. Acta. 113, 229-239 (2013).
  • [18] H. Nakano, S. Oue, Y. Hamaguchi, S. Kobayashi, H. Fukushima, Tetsu-to-Hagane. 96 (6), (2010).
  • [19] J. L. Ortiz-Aparicio, Y. Meas, G. Trejo, R. I. Ortega, T. W. Chapman, E. Chainet, J. Appl. Electrochem. 43, 289-300 (2013).
  • [20] S. Shanmugasigamani, M. Pushpavanam, Electrochim. Acta. 27, 725-735 (2009).
  • [21] F. Galvani, I. A. Carlos, Met. Finish, 70-71 (1997).
  • [22] X. Wu, Z. Liu, X. Liu, Hydrometallurgy 141, 31-35 (2014).
  • [23] M. Chandran, R. L. Sarma, R. M Krishnan, B. Electrochem. 15 (7-8), 242-247 (1999).
  • [24] https://media.beckman.com/-/media/pdf-assets/application-notes/particle-delsamax-application-note-hydrodynamic-sizesurfactant-micelles.pdf., Beckman Coulter, Inc. USA (2013).
  • [25] W. Guo, Y. W. Sun, G. S. Luo, Y. J. Wang, Colloid. Surface. A. 252, 71-77 (2005).
  • [26] S. K. Mehta, S. Kumar, M. Gradzielski, J. Colloid Interf. Sci. 360, 497-507 (2011).
  • [27] H. S. Maharana, A. Basu, Surf. Coat. Tech. 310, 148-156 (2017).
  • [28] T. H. de Keijser, J. I. Langrord, E. J. Mittemeijer, A.B.P. Vogels, J. Appl. Crystallogr. 15, 308-314 (1982).
  • [29] H. Kazimierczak, P. Ozga, A. Jałowiec, R. Kowalik, J. Alloy. Compd. 578, 82-89 (2013).
  • [30] P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, K. S. Novoselov, Nano Lett. 8 (6), 1704-1708 (2008).
  • [31] A. Mendez, Y. Meas, R. Ortega-Borges, G. Trejo, J. Electrochem. Soc. 159 (3), 48-55 (2012).
  • [32] M. Nunez, Metal Electrodeposition, Nova Science Publishers Inc., New York (2005). ISBN: 1-59454-456-5.
  • [33] H. Lee, R. M. Vanable, A. D. MacKerell Jr., R. W. Pastor, Biophys. J. 95, 1590-1599 (2008).
  • [34] H. H. Paradies, J. Phys. Chem.-US. 84 (6), 599-607 (1980).
  • [35] E. Clementi, D. L. Raimondi, J. Chem. Phys. 38, 2686-2689 (1963).
  • [36] E. Clementi, D. L. Raimondi, W. P. Reinhardt, J. Chem. Phys. 47, 1300–1307 (1967).
  • [37] C. Cachet, F. Ganne, S. Joiret, G. Maurin, J. Petitjean, V. Vivier, R. Wiart, Electrochim. Acta. 47, 3409-3422 (2002).
Uwagi
EN
1. This work was supported by projects: POIG-01.01.02-00-015/09-00 (ZAMAT) and IMIM PAS Z1 (Environment friendly technologies and materials). We acknowledge Dr R. Kowalik and Dr P. Zabinski for enabling us to carry out WDXRF measurements at AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Cracow, Poland.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe71c951-8723-4159-9eae-f31d0605e695
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.