PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quality Indicator for Ionospheric Biases Interpolation in the Network RTK

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the methodology and performance of an ionospheric quality indicator in the Network RTK. A new index called Zenith Ionospheric Residual Interpolation Uncertainty, which is an extension of the existing indicator is proposed and evaluated using the reference station test network. The dataset used for this study was collected during ionospheric storm period in order to test the indicator during disturbed ionospheric conditions. The test results show that the proposed indicator provides a realistic prediction of ionospheric interpolation accuracy and can be used to predict the Network RTK performance at rover location.
Czasopismo
Rocznik
Tom
Strony
7--21
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
  • Department of Geodesy and Geodetic Astronomy, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw
autor
  • Department of Geodesy and Geodetic Astronomy, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw
Bibliografia
  • 1. Alves, P., I. Geisler, N. Brown, J. Wirth, H.-J. Euler (2005). Introduction of a geometry based Network RTK quality indicator, Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GNSS 2005, 2552 2563.
  • 2. Bartels, J. (1957). The technique of scaling indices K and Q of geomagnetic activity, Annals of the International Geophysical Year 4, 215–226.
  • 3. Bosy, J., A. Oruba, W. Graszka, M. Leończyk, M. Ryczywolski (2008). ASG-EUPOS densification of EUREF Permanent Network on the territory of Poland, Reports on Geodesy 2(85), 105–112.
  • 4. Chang, X., X. Yang, Z. T. (2005). MLAMBDA: A modified LAMBDA method for integer least-squares estimation, Journal of Geodesy 79, 552–565.
  • 5. Chen, X., S. Han, C. Rizos, C. P. Goh (2000). Improving real time positioning efficiency using the Singapure integrated multiple reference station network (SIMRSN), Proceedings of the 13th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS 2000, 9–16.
  • 6. Chen, X., H. Landau, U. Vollath (2003). New tools for Network RTK integrity monitoring, Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS/GNSS 2003, 1355–1360.
  • 7. Grejner-Brzezińska, D. A., I. Kashani, P. Wielgosz (2005). On accuracy and reliability of instantaneous network RTK as a function of network geometry, station separation, and data processing strategy, GPS Solutions 9(3), 212–225.
  • 8. Hofmann-Wellenhof, B., H. Lichtenegger, E. Wasle (2008). GNSS Global Navigation Satellite Systems: GPS, GLONASS, Galileo & more, Springer, Wien, New York.
  • 9. Klobuchar, J. (1987). Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Transactions on Aerospace and Electronic Systems 23(3), 325–331.
  • 10. Landau, H., U. Vollath, X. Chen (2003). Virtual reference stations versus broadcast solutions in network RTK–advantage and limitations, Proceedings of the European Navigation Conference GNSS2003.
  • 11. Mader, G. (1999). GPS antenna calibration at national geodetic survey, GPS Solutions 3(1), 50–58.
  • 12. Melbourne, W. G. (1985). The case for ranging in GPS based geodetic systems, Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning Systems pages 373–386.
  • 13. Mervart, L. (1995). Ambiguity resolution techniques in geodetic and geodynamic applications of Global Positioning Systems, Ph.D. thesis, University of Berne.
  • 14. Niell, A. E. (1996). Global mapping functions for the atmosphere delay at radio wavelengths, Journal of Geophysical Research 101(B2), 3227–3246.
  • 15. Próchniewicz, D. (2011). A study on mitigation of the distance-dependent biases in the Network RTK Technique, Reports on Geodesy 1(90).
  • 16. Raquet, J. (1998). Development of a method for kinematic GPS carrier-phase ambiguity resolution using multiple reference receivers, Ph.D. thesis, University of Calgary.
  • 17. Rizos, C. (2002). Network RTK research and implementation – a geodetic perspective, Journal of Global Positioning Systems 1(2), 144–150.
  • 18. Saastamoinen, J. (1973). Contributions to the theory of atmospheric refractions, Bulletin Géodésique 107(1), 13–34.
  • 19. Teunissen, P. (1995). The least-squares ambiguity decorrelation adjustment: a method for fast GPS ambiguity estimation, Journal of Geodesy 70, 65–82.
  • 20. Wanninger, L. (1995). Improved ambiguity resolution by regional differential modeling of the ionosphere, Proceedings of the 8th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS 1995, 55–62.
  • 21. Wanninger, L. (2004). Ionospheric disturbance indices for RTK and Network RTK positioning, Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GNSS 2004, 2849–2854.
  • 22. Wübbena, G. (1985). Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements, Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning Systems pages 403–412.
  • 23. Wübbena, G., A. Bagge, G. Seeber, V. B oder, P. Hankemeier (1996). Reducing distance dependent errors for real-time precise DGPS applications by establishing reference station networks, Proceedings of the 9th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS 1996, 1845–1852.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe6f79b6-65e6-4549-9676-a217f402627b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.