PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue Properties of AZ31 and WE43 Magnesium Alloys

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents low-cycle fatigue (LCF) characteristics of selected magnesium alloys used, among others, in the automotive and aviation industries. The material for the research were bars of magnesium alloys AZ31 and WE43 after hot plastic working. Due to their application(s), these alloys should have good/suitable fatigue properties, first of all fatigue durability in a small number of cycles. Low-cycle fatigue tests were carried out on the MTS-810 machine at room temperature. Low-cycle fatigue trials were conducted for three total strain ranges Δεt of 0.8%, 1.0% and 1.2% with the cycle asymmetry factor R = –1. Based on the results obtained, fatigue life characteristics of materials, cyclic deformation characteristics σa = f(N) and cyclic deformation characteristics of the tested alloys were developed. The tests have shown different behaviors of the tested alloys in the range of low number of cycles. The AZ31 magnesium alloy was characterized by greater fatigue life Nf compared to the WE43 alloy.
Twórcy
autor
  • Silesian University of Technology, Institute of Materials Engineering, 8 Krasińskiego Str., 40-019 Katowice, Poland
Bibliografia
  • [1] K. E. Oczoś, A. Kawalec, Forming Light Metals, PWN, Warsaw (2012).
  • [2] Z. Pater, J. Tomczak, T. Bulzak, Numerical Analysis of Helical Rolling of a Hollow Roller Made of Titanium Alloy Ti6Al4V, Hutnik – Wiadomości Hutnicze, 82 (9), 599-603, (2015).
  • [3] J. Tao, Y. Zhang, F. Fan, Q. Cheen, Microstructural Evolution and Mechanical Properties of AZ31 Magnesium Alloy Prepared by Casting-solid Extrusion Forging During Partial Remelting, Defence Technology 9, 146-152, (2013).
  • [4] I. Schindler, P. Kawulok, E. Hadasik, D. Kuc, Activation energy in hot forming and recrystallization models for magnesium alloy AZ31, Journal of Materials Engineering and Performance 22 (3), 890-897, (2013).
  • [5] K. Drozdowski, K. Horzelska, Wpływ warunków kucia na strukturę stopów magnezu gatunku AZ 31 i AZ61 (The Influence of Forging Conditions on the Structure of Magnesium Alloys Grade AZ 31 and AZ 61), Hutnik – Wiadomości Hutnicze 82 (8), 488-493, (2015).
  • [6] A. Kiełbus, The influence of solution treatment time on the microstructure of WE43 magnesium alloy, Acta Metallurgica Slovaca 13, 653-657, (2007).
  • [7] Elektron WE-43, Data sheet 467. Magnesium Elektron, Wielka Brytania (2006).
  • [8] S. Rusz, L. Cizek, J. Kedron, S. Tylsar, M. Salajka, E. Hadasik, T. Donič, Structure and Mechanical Properties Selected Magnesium – Zirconium Alloys, In Journal of Trends in the Development of Machinery and Associated Technology 16 (1), 55-58, ISSN 2303-4009, (2012).
  • [9] A. G. Beer, M. G. Barnett, Microstructure evolution in hot worked and annealed magnesium alloy AZ31, Material Science and Engineering A 485, 318-324, (2008).
  • [10] F. Lv, F. Yang, Q. Q. Duan, Y. S. Yang, S. D. Wu, S. X. Li, Z. F. Zhang, Fatigue properties of rolled magnesium alloy (AZ31) sheet: Influence of specimen orientation, International Journal of Fatigue, 672-682, (2011).
  • [11] W. Kim, Y. Sa, Scripta Materialia 54, 1391-1395 (2006).
  • [12] G. Junak, Low-cycle fatigue characteristics of selected titanium, magnesium and aluminium alloys Arch. Metall. Mater. 63 (4), 1949-1955, (2018).
  • [13] S. Kocańda, Zmęczeniowe niszczenie metali, WNT, Warszawa (1978)
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe61daf9-4c89-431e-a6e8-fa01121a7735
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.