Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper introduces a novel approach to training Large Language Models (LLMs) using knowledge transfer from a Random Forest (RF) ensemble. By converting RF decision paths into natural language, this method enhances both the classification accuracy and explanation capabilities of LLMs. Our approach integrates three preprocessing techniques: Relation Encoding, Integer Normalisation, and Verbal Description of Values, tailored for numerical data, improving the model’s ability to interpret structured inputs effectively. Leveraging RF’s ensemble properties, we generate rule-based explanations that can be objectively validated, offering a cost-effective alternative to human evaluations. Experiments on well-known datasets demonstrate high classification accuracy highlighting the potential of our framework for numerical and structured data applications. This study also contributes to Explainable Artificial Intelligence (XAI) by providing LLMs with structured, objectively verifiable explanations, making them more accessible and interpretable for real-world decision-making tasks.
Wydawca
Rocznik
Tom
Strony
279--298
Opis fizyczny
Bibliogr. 59 poz., tab.
Twórcy
autor
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences
autor
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences
autor
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences
autor
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences
autor
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences
Bibliografia
- [1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, Advances in neural information processing systems 30 (2017).
- [2] Y. H. Yeo, J. S. Samaan, W. H. Ng, P.-S. Ting, H. Trivedi, A. Vipani, W. Ayoub, J. D. Yang, O. Liran, B. Spiegel, et al., Assessing the performance of chatgpt in answering questions regarding cirrhosis and hepatocellular carcinoma, Clinical and molecular hepatology 29 (3) (2023) 721.
- [3] Y. Ge, W. Hua, K. Mei, J. Tan, S. Xu, Z. Li, Y. Zhang, et al., Openagi: When llm meets domain experts, Advances in Neural Information Processing Systems 36 (2024).
- [4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al., Evaluating large language models trained on code, arXiv preprint arXiv:2107.03374 (2021).
- [5] X. Wu, H. Zhao, Y. Zhu, Y. Shi, F. Yang, T. Liu, X. Zhai, W. Yao, J. Li, M. Du, et al., Usable xai: 10 strategies towards exploiting explainability in the llm era, arXiv preprint arXiv:2403.08946 (2024).
- [6] X. Fang, W. Xu, F. A. Tan, J. Zhang, Z. Hu, Y. Qi, S. Nickleach, D. Socolinsky, S. Sengamedu, C. Faloutsos, Large language models on tabular data–a survey, arXiv preprint arXiv:2402.17944 (2024).
- [7] T. Dinh, Y. Zeng, R. Zhang, Z. Lin, M. Gira, S. Rajput, J.-y. Sohn, D. Papailiopoulos, K. Lee, Lift: Language-interfaced fine-tuning for non-language machine learning tasks, Advances in Neural Information Processing Systems 35 (2022) 11763–11784.
- [8] Y. Hou, J. Zhang, Z. Lin, H. Lu, R. Xie, J. McAuley, W. X. Zhao, Large language models are zero-shot rankers for recommender systems, in: European Conference on Information Retrieval, Springer, 2024, pp. 364–381.
- [9] B. Zhao, C. Ji, Y. Zhang, W. He, Y. Wang, Q. Wang, R. Feng, X. Zhang, Large language models are complex table parsers, arXiv preprint arXiv:2312.11521 (2023).
- [10] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al., Chain-of-thought prompting elicits reasoning in large language models, Advances in neural information processing systems 35 (2022) 24824–24837.
- [11] C. Yuan, Q. Xie, J. Huang, S. Ananiadou, Back to the future: Towards explainable temporal reasoning with large language models, arXiv preprint arXiv:2310.01074 (2023).
- [12] Y. Sui, M. Zhou, M. Zhou, S. Han, D. Zhang, Table meets llm: Can large language models understand structured table data? a benchmark and empirical study, in: Proceedings of the 17th ACM International Conference on Web Search and Data Mining, 2024, pp. 645–654.
- [13] H. Xue, F. D. Salim, Promptcast: A new prompt-based learning paradigm for time series forecasting, IEEE Transactions on Knowledge and Data Engineering (2023).
- [14] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, X. Wu, Unifying large language models and knowledge graphs: A roadmap, IEEE Transactions on Knowledge and Data Engineering (2024).
- [15] Q. Li, Y. Liang, Y. Diao, C. Xie, B. Li, B. He, D. Song, https://openreview.net/forum?id=SJTSvRtGsN, Tree-as-a-prompt: Boosting black-box large language models on few-shot classification of tabular data (2024). https://openreview.net/forum?id=SJTSvRtGsN
- [16] N. Ziems, G. Liu, J. Flanagan, M. Jiang, Explaining tree model decisions in natural language for network intrusion detection, arXiv preprint arXiv:2310.19658 (2023).
- [17] Y. Zhuang, L. Liu, C. Singh, J. Shang, J. Gao, Learning a decision tree algorithm with transformers, arXiv preprint arXiv:2402.03774 (2024).
- [18] L. Breiman, Random forests, Machine learning 45 (2001) 5–32.
- [19] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, Advances in neural information processing systems 30 (2017).
- [20] J. Zhou, T. Lu, S. Mishra, S. Brahma, S. Basu, Y. Luan, D. Zhou, L. Hou, Instruction-following evaluation for large language models, arXiv preprint arXiv:2311.07911 (2023).
- [21] M. Romaszewski, P. Sekuła, Poster: Explainable classification of multimodal time series using llms, in: Polish Conference of Artificial Intelligence (PP-RAI’2024), Warsaw, Poland, 2024.
- [22] T. Wei, J. Luan, W. Liu, S. Dong, B. Wang, Cmath: can your language model pass chinese elementary school math test?, arXiv preprint arXiv:2306.16636 (2023).
- [23] J. Ahn, R. Verma, R. Lou, D. Liu, R. Zhang, W. Yin, Large language models for mathematical reasoning: Progresses and challenges, arXiv preprint arXiv:2402.00157 (2024).
- [24] S. Imani, L. Du, H. Shrivastava, Mathprompter: Mathematical reasoning using large language models, arXiv preprint arXiv:2303.05398 (2023).
- [25] R. Yamauchi, S. Sonoda, A. Sannai, W. Kumagai, Lpml: llm-prompting markup language for mathematical reasoning, arXiv preprint arXiv:2309.13078 (2023).
- [26] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, D. Zhou, Self-consistency improves chain of thought reasoning in language models, arXiv preprint arXiv:2203.11171 (2022).
- [27] L. Yu, W. Jiang, H. Shi, J. Yu, Z. Liu, Y. Zhang, J. T. Kwok, Z. Li, A. Weller, W. Liu, Meta-math: Bootstrap your own mathematical questions for large language models, arXiv preprint arXiv:2309.12284 (2023).
- [28] L. C. Magister, J. Mallinson, J. Adamek, E. Malmi, A. Severyn, Teaching small language models to reason, arXiv preprint arXiv:2212.08410 (2022).
- [29] A. K. Singh, D. Strouse, Tokenization counts: the impact of tokenization on arithmetic in frontier llms, arXiv preprint arXiv:2402.14903 (2024).
- [30] M. Muffo, A. Cocco, E. Bertino, Evaluating transformer language models on arithmetic operations using number decomposition, arXiv preprint arXiv:2304.10977 (2023).
- [31] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot learners, Advances in neural information processing systems 33 (2020) 1877–1901.
- [32] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, Y. Iwasawa, Large language models are zero-shot reasoners, Advances in neural information processing systems 35 (2022) 22199–22213.
- [33] Z. Yu, L. He, Z. Wu, X. Dai, J. Chen, Towards better chain-of-thought prompting strategies: A survey, arXiv preprint arXiv:2310.04959 (2023).
- [34] X. Cheng, J. Li, W. X. Zhao, J.-R. Wen, Chainlm: Empowering large language models with improved chain-of-thought prompting, arXiv preprint arXiv:2403.14312 (2024).
- [35] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, Y. Zhuang, HuggingGPT: Solving AI tasks with ChatGPT and its friends in Hugging Face, in: A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, S. Levine (Eds.), Advances in Neural Information Processing Systems, Vol. 36, Curran Associates, Inc., 2023, pp. 38154–38180.
- [36] Y. Fu, H. Peng, A. Sabharwal, P. Clark, T. Khot, Complexity-based prompting for multi-step reasoning, in: The Eleventh International Conference on Learning Representations, 2022.
- [37] X. Liu, T. Pang, C. Fan, Federated prompting and chain-of-thought reasoning for improving llms answering, in: International Conference on Knowledge Science, Engineering and Management, Springer, 2023, pp. 3–11.
- [38] R. R. Hoffman, S. T. Mueller, G. Klein, J. Litman, Metrics for explainable ai: Challenges and prospects, arXiv preprint arXiv:1812.04608 (2018).
- [39] R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian, Z. Wen, T. Shah, G. Morgan, et al., Explainable ai (xai): Core ideas, techniques, and solutions, ACM Computing Surveys 55 (9) (2023) 1–33.
- [40] S. Gawde, S. Patil, S. Kumar, P. Kamat, K. Kotecha, S. Alfarhood, Explainable predictive maintenance of rotating machines using lime, shap, pdp, ice, IEEE Access 12 (2024) 29345–29361.
- [41] B. H. Van der Velden, H. J. Kuijf, K. G. Gilhuijs, M. A. Viergever, Explainable artificial intelligence (xai) in deep learning-based medical image analysis, Medical Image Analysis 79 (2022) 102470.
- [42] G. Srivastava, R. H. Jhaveri, S. Bhattacharya, S. Pandya, P. K. R. Maddikunta, G. Yenduri, J. G. Hall, M. Alazab, T. R. Gadekallu, et al., Xai for cybersecurity: state of the art, challenges, open issues and future directions, arXiv preprint arXiv:2206.03585 (2022).
- [43] E. Cambria, L. Malandri, F. Mercorio, M. Mezzanzanica, N. Nobani, A survey on xai and natural language explanations, Information Processing & Management 60 (1) (2023) 103111.
- [44] H. Luo, L. Specia, From understanding to utilization: A survey on explainability for large language models, arXiv preprint arXiv:2401.12874 (2024).
- [45] J. Yu, A. I. Cristea, A. Harit, Z. Sun, O. T. Aduragba, L. Shi, N. Al Moubayed, Interaction: A generative xai framework for natural language inference explanations, in: 2022 International Joint Conference on Neural Networks (IJCNN), IEEE, 2022, pp. 1–8.
- [46] V. B. Nguyen, J. Schlötterer, C. Seifert, From black boxes to conversations: Incorporating xai in a conversational agent, in: World Conference on Explainable Artificial Intelligence, Springer, 2023, pp. 71–96.
- [47] J. W. Tukey, et al., Exploratory data analysis, Vol. 2, Springer, 1977.
- [48] N. Dave, D. Kifer, C. L. Giles, A. Mali, Investigating symbolic capabilities of large language models, arXiv preprint arXiv:2405.13209 (2024).
- [49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830.
- [50] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu, Exploring the limits of transfer learning with a unified text-to-text transformer, Journal of machine learning research 21 (140) (2020) 1–67.
- [51] S. Longpre, L. Hou, T. Vu, A. Webson, H. W. Chung, Y. Tay, D. Zhou, Q. V. Le, B. Zoph, J. Wei, et al., The flan collection: Designing data and methods for effective instruction tuning, in: International Conference on Machine Learning, PMLR, 2023, pp. 22631–22648.
- [52] S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu, T. Zhang, F. Wu, et al., Instruction tuning for large language models: A survey, arXiv preprint arXiv:2308.10792 (2023).
- [53] N. Muennighoff, T. Wang, L. Sutawika, A. Roberts, S. Biderman, T. L. Scao, M. S. Bari, S. Shen, Z.-X. Yong, H. Schoelkopf, et al., Crosslingual generalization through multitask finetuning, arXiv preprint arXiv:2211.01786 (2022).
- [54] Y. Wang, S. Mishra, P. Alipoormolabashi, Y. Kordi, A. Mirzaei, A. Arunkumar, A. Ashok, A. S. Dhanasekaran, A. Naik, D. Stap, et al., Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks, arXiv preprint arXiv:2204.07705 (2022).
- [55] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, Lora: Low-rank adaptation of large language models, arXiv preprint arXiv:2106.09685 (2021).
- [56] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al., Transformers: State-of-theart natural language processing, in: Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations, 2020, pp. 38–45.
- [57] K. H. Brodersen, C. S. Ong, K. E. Stephan, J. M. Buhmann, The balanced accuracy and its posterior distribution, in: 2010 20th international conference on pattern recognition, IEEE, 2010, pp. 3121–3124.
- [58] P. Głomb, M. Cholewa, W. Koral, A. Madej, M. Romaszewski, Detection of emergent leaks using machine learning approaches, Water Supply 23 (6) (2023) 2370–2386.
- [59] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al., Training language models to follow instructions with human feedback, Advances in neural information processing systems 35 (2022) 27730–27744.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe5fb905-7297-4623-adfa-7a8ba7b77566
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.