PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exergetic, environmental and economic assessment of sugarcane first-generation biorefineries

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
First generation ethanol (1G) contributes to the majority of the ethanol produced worldwide, predominantly centered on corn and sugarcane. Nevertheless, several issues are regularly highlighted concerning the long-term sustainability of this technology, including its intensive water and land use, potential contamination of soils through the distillation residues, as well as the balance between fuel and food crops. Accordingly, in this study, a process design approach for biomass to ethanol production (1G ethanol technology) from sugarcane was performed by using Aspen Plus® software, based on the autonomous distillery (AUT, ethanol production) and the annexed plant (ANX, joint ethanol and sugar production) configurations. In addition, a performance comparison in respect to the exergy efficiency and the irreversibility as quality indicators of the conversion processes is carried out to identify potential improvements in the production facilities. Hence, the shortcomings of the techno-economic assessment of ethanol production can be overcome by using exergy efficiency as a suitable indicator for process performance. Moreover, the technical/sustainability aspects related to the process design of the sugarcane biorefineries are discussed in light of the renewability exergy index (λ). In general, the ANX plant has a saving in the process irreversibility rate of about 6%, whereas the average unitary exergy cost is 10% lower (AUEC= 2.41 kJ/kJ), in contrast to the AUT distillery. Moreover, a techno-economic analysis was carried out to assess the annexed plant and the autonomous distillery systems, considering the estimated capital expenditure. The results indicated that the ANX biorefinery has higher capex than the AUT distillery. It is noted that the higher investments are associated with sugarcane reception, ethanol production (juice extraction) and the combined heat and power sub-systems. Concerning system performance, the ANX plant presented a better overall exergy efficiency, with 41.39 %. Although this multi-criteria analysis is applied to 1G ethanol technology; it may be well-matched for various biorefineries/bioprocesses as a methodology to support decision-making as concerns potential improvement, well ahead of detailed process design.
Rocznik
Strony
67--81
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Laboratory of Optimization, Design and Advanced Control, School of Chemical Engineering, University of Campinas, Av. Albert Einstein 500, Campinas 13083-852, Brazil
  • Laboratory of Environmental and Thermal Engineering, Department of Mechanical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto, 1289, São Paulo, 05508-900, Brazil
  • Laboratory of Environmental and Thermal Engineering, Department of Mechanical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto, 1289, São Paulo, 05508-900, Brazil
  • Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Rue de l’Industrie 17, Sion CH-1951, Switzerland
  • Laboratory of Optimization, Design and Advanced Control, School of Chemical Engineering, University of Campinas, Av. Albert Einstein 500, Campinas 13083-852, Brazil
Bibliografia
  • [1] K. J. Ptasinski, Efficiency of biomass energy: an exergy approach to biofuels, power, and biorefineries, John Wiley & Sons, 2016.
  • [2] Rfa, renewable fuels association - leading trade association for us ethanol, renewable fuels association. (n.d.). https://ethanolrfa.org/ (accessed october 9, 2018).
  • [3] Epe, brazilian energy balance 2017, epe. (n.d.). http://www.epe.gov.br/en/publications/publications/brazilian-energybalance/brazilian-energy-balance-2017 (accessed january 13, 2019).
  • [4] A. Ensinas, M. Modesto, S. Nebra, L. Serra, Reduction of irreversibility generation in sugar and ethanol production from sugarcane, Energy 34 (5) (2009) 680–688.
  • [5] L. F. Pellegrini, S. de Oliveira Junior, Combined production of sugar, ethanol and electricity: thermoeconomic and environmental analysis and optimization, Energy 36 (6) (2011) 3704–3715.
  • [6] E. A. Pina, R. Palacios-Bereche, M. F. Chavez-Rodrigues, A. V. Ensinas, M. Modesto, S. A. Nebra, et al., Thermal integration of different plant configurations of sugar and ethanol production from sugarcane, CHEMICAL ENGINEERING 39.
  • [7] J. Q. Albarelli, A. V. Ensinas, M. A. Silva, Product diversification to enhance economic viability of second generation ethanol production in brazil: the case of the sugar and ethanol joint production, Chemical Engineering Research and Design 92 (8) (2014) 1470–1481.
  • [8] D. Flórez-Orrego, J. A. da Silva, H. Velásquez, S. de Oliveira Jr, Renewable and non-renewable exergy costs and co2 emissions in the production of fuels for brazilian transportation sector, Energy 88 (2015)18–36.
  • [9] M. O. Dias, M. Modesto, A. V. Ensinas, S. A. Nebra, R. Maciel Filho, C. E. Rossell, Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems, Energy 36 (6) (2011) 3691–3703.
  • [10] L. Pellegrini, M. Modesto, S.A. Nebra, S. Oliveira junior, modern concept for ethanol distilleries: Maximization of the electricity surplus, proceedings of encit-abcm, belo horizonte-mg, brazil. (2008).
  • [11] M. Modesto, A. Aoki, A. Lodi, E. Pina, Assessment of the potential to increase electricity generation from sugarcane straw in brazilian sugarcane cogeneration plants, Chemical Engineering Transactions 50 (2016) 193–198.
  • [12] R. Palacios-Bereche, K. J. Mosqueira-Salazar, M. Modesto, A. V. Ensinas, S. A. Nebra, L. M. Serra, M.-A. Lozano, Exergetic analysis of the integrated first-and second-generation ethanol production from sugarcane, Energy 62 (2013) 46–61.
  • [13] E. A. Pina, R. Palacios-Bereche, M. F. Chavez-Rodriguez, A. V. Ensinas, M. Modesto, S. A. Nebra, Reduction of process steam demand and water-usage through heat integration in sugar and ethanol production from sugarcane–evaluation of different plant configurations, Energy 138 (2017) 1263–1280.
  • [14] A. V. Ensinas, V. Codina, F. Marechalb, J. Albarelli, M. A. Silva, Thermo-economic optimization of integrated first and second generation sugarcane ethanol plant, Chemical Engineering 35.
  • [15] M. Dias, O. Cavalett, R. Maciel Filho, A. Bonomi, Integrated first and second generation ethanol production from sugarcane, Chemical Engineering Transactions 37 (2014) 445–450.
  • [16] A. Bonomi, T. Junqueira, M. Chagas, V. Gouveiaa, M. Watanabe, O. Cavalett, Techno-economic and environmental assessment of second generation ethanol: Short and long term prospects, Chemical Engineering Transactions 50 (2016) 439–444.
  • [17] P. Silva-Ortiz, R. Maciel Filho, Comparative performance indexes for ethanol production based on autonomous and annexed sugarcane plants, Chemical Engineering Transactions 65 (2018) 625–630.
  • [18] R. Palacios-Bereche, A. V. Ensinas, M. Modesto, S. A. Nebra, et al., Extraction process in the ethanol production from sugarcane–a comparison of milling and diffusion, CHEMICAL ENGINEERING 39.
  • [19] M. O. Dias, T. L. Junqueira, I. L. Sampaio, M. F. Chagas, M. D. Watanabe, E. R. Morais, V. L. Gouveia, B. C. Klein, M. C. Rezende, T. F. Cardoso, et al., Use of the vsb to assess biorefinery strategies, in: Virtual Biorefinery, Springer, 2016, pp. 189–256.
  • [20] M. O. d. S. Dias, et al., Desenvolvimento e otimização de processos de produção de etanol de primeira e segunda geração e eletricidade a partir da cana-de-açúcar, development and optimization of first and second generation bioethanol and electricity production processes from sugarcane.
  • [21] M. O. d. S. Dias, et al., Simulação do processo de produção de etanol a partir do açúcar e do bagaço, visando a integração do processo e a maximização da produção de energia e excedentes do bagaço, simulation of ethanol production processes from sugar and sugarcane bagasse, aiming process integration and maximization of energy and bagasse surplus.
  • [22] A. Bonomi, O. Cavalett, M. CUNHA, M. A. Lima, Virtual biorefinery, Cham: Springer International Publishing.
  • [23] Aspen plus, (n.d.). https://www.aspentech.com/en/products/engineering/aspenplus (accessed october 9, 2018).
  • [24] J. Szargut, D. Morris, F. Steward, Exergy analysis of thermal, chemical and metallurgical processes, hemisphere publ, Corp., New York (1988) 331.
  • [25] T. Kotas, The exergy method of thermal plant analysis.
  • [26] P. S. Ortiz, S. de Oliveira Jr, Exergy analysis of pretreatment processes of bioethanol production based on sugarcane bagasse, Energy 76 (2014) 130–138.
  • [27] P. S. Ortiz, S. de Oliveira Jr, Compared exergy analysis of sugarcane bagasse sequential hydrolysis and fermentation and simultaneous saccharification and fermentation, International Journal of Exergy 19 (4) (2016) 459–480.
  • [28] S. de Oliveira Junior, Exergy: production, cost and renewability, Springer Science & Business Media, 2012.
  • [29] M. Lozano, A. Valero, Theory of the exergetic cost, Energy 18 (9) (1993) 939–960.
  • [30] R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes, 5th edition, Pearson Education, 2018.
  • [31] G. D. Ulrich, G. D. Ulrich, P. T. Vasudevan, A Guide to Chemical Engineering Process Design and Economics: A Practical Guide, CRC, 2003.
  • [32] W. D. Seider, D. R. Lewin, J. Seader, S. Widagdo, R. Gani, K. M. Ng, Product and process design principles: Synthesis, analysis and evaluation, 4th edition.
  • [33] D. Stolten, V. Scherer, Transition to renewable energy systems, John Wiley & Sons, 2013.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe5f1721-1e27-44f1-a3ae-1d8e620a803e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.