PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Numerical Study of Non-hydrostatic Shallow Flows in Open Channels

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The flow field of many practical open channel flow problems, e.g. flow over natural bed forms or hydraulic structures, is characterised by curved streamlines that result in a non-hydrostatic pressure distribution. The essential vertical details of such a flow field need to be accounted for, so as to be able to treat the complex transition between hydrostatic and non-hydrostatic flow regimes. Apparently, the shallow-water equations, which assume a mild longitudinal slope and negligible vertical acceleration, are inappropriate to analyse these types of problems. Besides, most of the current Boussinesq-type models do not consider the effects of turbulence. A novel approach, stemming from the vertical integration of the Reynolds-averaged Navier-Stokes equations, is applied herein to develop a non-hydrostatic model which includes terms accounting for the effective stresses arising from the turbulent characteristics of the flow. The feasibility of the proposed model is examined by simulating flow situations that involve non-hydrostatic pressure and/or nonuniform velocity distributions. The computational results for free-surface and bed pressure profiles exhibit good correlations with experimental data, demonstrating that the present model is capable of simulating the salient features of free-surface flows over sharply-curved overflow structures and rigid-bed dunes.
Rocznik
Strony
17--35
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • David & James – Engineering and Environmental Consultancy, 204 Albion Road, Victoria 3350, Australia
Bibliografia
  • Abramowitz M. and Stegun I. A. (1972) Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 10th ed., Wiley, New York, NY.
  • Ali S. and Dey S. (2016) Theory of turbulent flow over a wavy boundary, J. Hydr. Eng., 142 (6), 10.1061/(ASCE)HY.1943-7900.0001125.
  • Anh T. N. and Hosoda T. (2007) Depth-averaged model of open-channel flows over an arbitrary 3D surface and its applications to analysis of water surface profile, J. Hydr. Eng., 133 (4), 350–360.
  • Basco D. R. (1987) Computation of Rapidly-varied, Unsteady, Free-surface Flow, Water Resources Investigation Report No. 83–4284, U.S. Geological Survey, Reston, VA.
  • Berger R. C. and Carey G. F. (1998a), Free-surface flow over curved surfaces-Part I: Perturbation analysis, Int. J. Numer. Methods Fluids, 28 (2), 191–200.
  • Berger R. C. and Carey G. F. (1998b), Free-surface flow over curved surfaces-Part II: Computational model, Int. J. Numer. Methods Fluids, 28 (2), 201–213.
  • Blom P. and Booij R. (1995) Turbulent free-surface flow over sills, J. Hydr. Res., 33 (5), 663–682.
  • Bose S. and Dey S. (2007) Curvilinear flow profiles based on Reynolds-averaging, J. Hydr. Eng., 133 (9), 1074–1079.
  • Boussinesq J. (1877) Essai Sur la Théorie des Eaux Courantes (Essay on the Theory of Water Flow), Mémories Présentés par Divers Savants à l’Académie des Sciences, Paris, 23 (1), 1–680 [in French].
  • Carmo J. A. D. (2013) Boussinesq and Serre type models with improved linear dispersion characteristics: applications, J. Hydr. Res., 51 (6), 719–727.
  • Castro-Orgaz O. and Hager W. H. (2014) One-dimensional modelling of curvilinear free-surface flow: generalised Matthew theory, J. Hydr. Res., 52 (1), 14–23.
  • Chen C. L. (1991) Unified theory on power-laws for flow resistance, J. Hydr. Eng., 117 (3), 371–389.
  • Cottino C. F. G. (1993) An Experimental Study of Flow Around Bed Forms, MSc Thesis, University of the Witwatersrand, Johannesburg, South Africa.
  • Delft Hydraulics Laboratory (1980) Computation of Siltation in Dredged Trenches; Semi-empirical Model for the Flow in Dredged Trenches, Report No. R1267-III/M1536, Delft, The Netherlands.
  • Dewals B. J., Erpicum S., Archambeau P., Detrembleur S. and Pirotton M. (2006) Depth-integrated flow modelling taking into account bottom curvature, J. Hydr. Res., 44 (6), 787–795.
  • Dressler R. F. (1978) New nonlinear shallow flow equations with curvature, J. Hydr. Res., 16 (3), 205–222.
  • Elder J.W. (1959), The dispersion of marked fluid in turbulent shear flow, J. Fluid Mech., 5 (4), 544–560.
  • Fenton J. D. and Zerihun Y. T. (2007) A Boussinesq approximation for open channel flow, Proceedings of the 32nd Congress, IAHR, Venice, Italy, 2–6 July, CD-ROM, 1–10.
  • Fenton J. D. and Darvishi E. (2016) A discussion to “Minimum specific energy and transcritical flow in unsteady open-channel flow”, J. Irrig. Drain Eng., 142 (10), 10.1061/(ASCE)IR.1943-4774.0001077.
  • Ferziger J. H. and Peric M. (2002) Computational Methods for Fluid Dynamics, 3rd rev. ed., Springer-Verlag Berlin Heidelberg, New York, NY.
  • Fischer B. H., List E. J., Koh R. C., Imberger J. and Brooks N. H. (1979) Mixing in Inland and Coastal Waters, Academic Press, New York, NY.
  • French R. H. (2007) Open Channel Hydraulics, Water Resources Publications, Highlands Ranch, CO.
  • Ghamry H. K. and Steffler P. M. (2002) Effect of applying different distribution shapes for velocities and pressure on simulation of curved open channels, J. Hydr. Eng., 128 (11), 969–982.
  • Haaland S. E. (1983) Simple and explicit formulas for the friction factor in turbulent pipe flow, J. Fluids Eng., 105 (1), 89–90.
  • Hager W. H. and Hutter K. (1984) Approximate treatment of plane channel flow, Acta Mech., 51, 31–48.
  • James C. S and Cottino C. F. G. (1995) An experimental study of flow over artificial bed forms, Water SA, 21 (4), 299–306.
  • Jin Y. and Li B. (1996) The use of a one-dimensional depth-averaged moment of momentum equation for the non-hydrostatic pressure condition, Can. J. Civ. Eng., 23, 150–156.
  • Lyn D. A. (1993) Turbulence measurement in open channel flows over artificial bed forms, J. Hydr. Eng., 119 (3), 306–326.
  • Massé P. (1938) Ressaut et ligne d’eau dans les cours d’eau `a pente variable (Hydraulic jump and free-surface profile in channels of variable slope), Rev. Gén. Hydr. 4 (19), 1–11; 4 (20), 61–64 [in French].
  • Matthew G. D. (1991) Higher order, one-dimensional equations of potential flow in open channels, Proc. Instn. Civ. Eng., London, England, 91 (3), 187–201.
  • Meyer-Peter E. and Müller R. (1948) Formulas for bed-load transport, Proceedings of the 3rd Meeting of IAHR, Stockholm, Sweden, 39–64.
  • Mohapatra P. K. and Chaudhry M. H. (2004) Numerical solution of Boussinesq equations to simulate dam-break flows, J. Hydr. Eng., 130 (2), 156–159.
  • Rodi W. (1993) Turbulence Models and Their Application in Hydraulics: a state-of-the-art review, IAHR monograph, 3rd ed., Balkema, Rotterdam, The Netherlands.
  • Serre F. (1953) Contribution à l’étude des écoulements permanents et variables dans les canaux (Contribution to the study of permanent and nonpermanent flows in channels), La Houille Blanche, 8 (6–7), 374–388; 8 (12), 830–872 [in French].
  • Shimozono T. and Sato S. (2016) Coastal vulnerability analysis during tsunami-induced levee overflow and breaching by a high-resolution flood model, Coast. Eng., 107, 116–126.
  • Sivakumaran N. S. (1981) Shallow Flow over Curved Beds, DEng Thesis, Asian Institute of Technology, Bangkok, Thailand.
  • Steffler P. M. and Jin Y. (1993) Depth averaged and moment equations for moderately shallow free-surface flow, J. Hydr. Res., 31 (1), 5–17.
  • Tossou E. E. (2009) Extension of the 2DH Saint-Venant Hydrodynamic Model for Flows with Vertical Acceleration, PhD Thesis, Laval University, Québec, Canada.
  • van Rijn L. C. (2011) Principle of Fluid Flow and SurfaceWaves in Rivers, Estuaries, Seas and Oceans, Aqua Publications, Amsterdam, The Netherlands.
  • White F. M. (2011) Fluid Mechanics, 7th ed., McGraw-Hill, New York, NY.
  • Zerihun Y. T. (2004) A One-dimensional Boussinesq-type Momentum Model for Steady Rapidly-varied Open Channel Flows, PhD Thesis, Department of Civil and Environmental Engineering, The University of Melbourne, Australia.
  • Zerihun Y. T. (2008) Development and validation of a one-dimensional non-hydrostatic open channel flow model, Proceedings of the 31st Hydrology and Water Resources Symposium, and the 4th International Conference on Water Resources and Environment Research, Adelaide, Australia, 15–17 April, CD-ROM, 2485–2495.
  • Zobeyer H. and Steffler P. M. (2012) Modelling plane open-channel flows by coupled depth-averaged and RANS equations, J. Hydr. Res., 50 (1), 82–88.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe59e920-d536-4199-83d0-9c6dea600eed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.