PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A rare indium-bearing mineral (Zn-In-Cu-Fe sulphide) from the Stara Kamienica Schist Belt (Sudetes, SW Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A rare indium-bearing mineral from the stratiform Czerniawa Zdrój-Krobica Sn deposit in the Sudetes (NE part of the Bohemian Massif) has been recognized in the qualitative-quantitative chemical composition studies of sulphide-cassiterite samples by electron microprobe (EMPA). This indium-bearing mineral occurs in the form of separate hipautomorphic microscopic grains (diameter 5-20 μm) and as intergrowths and disseminations in chalcopyrite. Observations indicate that this phase crystallized with the main generation of chalcopyrite, sphalerite and also with a younger generation of cassiterite in the mineral succession. The chemical composition of this mineral is as follows: S – 29.38-30.77 wt.%, Zn – 29.76-34.02 wt.%, In – 17.52-19.40 wt.%, Cu – 9.05-10.75 wt.%, Fe – 7.76-8.7 wt.% and Sn – 0.03-0.1 wt.%. Its calculated chemical formula is: (Zn2.09In0.67Cu0.65Fe0.64Cd0.02)Σ4.07S4.0 and it is characterized by enrichment of Zn with simultaneous depletion in Cu and Sn relative to the ideal chemical composition of sakuraiite – the most similar mineral in terms of chemical composition. In the light of our new data, it should be considered as a yet unnamed Zn-In-Cu-Fe sulphide mineral. In addition, coexisting sulphide minerals – chalcopyrite (max. 1580 ppm of In) and sphalerite (max. 1640 ppm of In) were identified as indium carriers.
Rocznik
Strony
art. no. 7
Opis fizyczny
Bibliogr. 72 poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Alekseev, V.I., Marin, Y.B., 2015. Composition and evolution of accessory mineralization of Li-F granites in the Far East as indicators of their ore potential. Geology of Ore Deposits, 57: 635-644.
  • 2. Anderson, C.S., 2020. Indium. In: Mineral Commodity Summaries 2020: 78-79. United States Geological Survey.
  • 3. Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C., 1990. Handbook of Mineralogy (I - Elements, Sulfides, Sulfosalts): Mineral Data Publishing, Tucson, Arizona http://www.handbookofmineralogy.com/pdfs/sakuraiite.pdf.
  • 4. Bachmann, K., Frenzel, M., Krause, J., Gutzmer, J., 2017. Advanced identification and quantification of In-bearing minerals by scanning electron microscope-based image analysis. Microscopy and Microanalysis, 23: 527-537.
  • 5. Barbalace, K., 2019. Periodic Table of Elements. EnvironmentalChemistry.com.
  • 6. Berendsen, P., Speczik, S., Wiszniewska, J., 1987. Sulphide geochemical studies of the stratiform tin deposits in the Stara Kamienica Chain (SW Poland). Archiwum Mineralogiczne, 42: 31-42.
  • 7. Bobiński, W., 1991. Wrostki kasyterytu w minerałach skałotwórczych (in Polish). In: Mineralizacja Sn i jej pozycja w ewolucji geologicznej pasma Kamienieckiego (Góry Izerskie - Sudety Zachodnie). Materiały CXXXI Sesji Nauk PIG: 4-5.VI.1991. Wrocław.
  • 8. Cabri, L.J., Harris, D.C., Stewart, J.M., 1970. Costibite (CoSbS), a new mineral from Broken Hill, N.S.W., Australia. American Mineralogist, 55: 10-17.
  • 9. Cantinolle, P., Laforet, C., Maurel, C., Picot, P., Grangeon, I.J., 1985. Contribution a la mineralogy de l'indium. Decouverte en France de deux nouveaux sulfures d'indium de deux nouvelles occurrences de roquesite. Bulletin de Minéralogie: Mineral Cristallographie, 108: 245-248.
  • 10. Cook, N.J., Dudek, K., 1994. Mineral chemistry and metamorphism of garnet chlorite-mica schist associated with cassiterite-sulphide mineralization from the Kamienica Range, Izera Mountains, S.W. Poland. Chemie der Erde, 54: 1-32.
  • 11. Damdinova, L.B., Damdinov, B.B., Huang, X.W., Bryansky, N.V., Khubanov, V.B., Yudin, D.S., 2019. Age, conditions of formation, and fluid composition of the Pervomaiskoe molybdenum deposit (Dzhidinskoe ore field, south-western Transbaikalia, Russia). Minerals, 9: 572.
  • 12. Dill, H.G., 2010. The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth-Science Reviews, 100: 1-420.
  • 13. Dill, H.G., Garrido, M.M., Melcher, F., Gomez, M.C., Weber, B., Luna, L.I., Bahr, A., 2013. Sulfidic and non-sulfidic indium mineralization of the epithermal Au-Cu-Zn-Pb-Ag deposit San Roque (Provincia Rio Negro, SE Argentina) - with special reference to the “indium window” in zinc sulphide. Ore Geology Reviews, 51: 103-128.
  • 14. Fleischer, M., 1968. New mineral names. American Mineralogist: 53: 1421.
  • 15. Frenzel, M., Hirsch, T., Gutzmer, J., 2016. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type - a meta-analysis. Ore Geology Reviews, 76: 52-78.
  • 16. Foltyn, K., Bertrandsson Erlandsson, V., Kozub-Budzyń, G.A., Melcher, F., Piestrzyński, A., 2020. Indium in polymetallic mineralisation at the Gierczyn mine, Karkonosze-Izera Massif, Poland: results of EPMA and LA-ICP-MS investigations. Geological Quarterly, 64 (1): 74-85.
  • 17. Genkin, A.D., Murav'eva, I.V., 1963. Novyye mineral indiya (in Russian). Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 92: 445.
  • 18. Ichikawa, K., Murakami, N., Hase, A., Wadatsumi, K., 1968. Late Mesozoic igneous activity in the Inner Side of Southwest Japan. Pacific Geology, 1: 97-118.
  • 19. Ivanov, V.V., 1963. Indium in some igneous rocks of the USSR. Geochemistry, 12: 1-15.
  • 20. Jiménez-Franco, A., Alfonso Abella, M.P., Canet Miquel, C., Trujillo, J.E., 2018. Mineral chemistry of In-bearing minerals in the Santa Fe mining district, Bolivia. Andean Geology, 45: 410-432.
  • 21. Jorgenson, J.D., George, M.W., 2005. Mineral Commodity Profile: Indium. U.S. Geological Survey Open-File Report 2004-1300.
  • 22. Kato, A., 1965. Sakuraiite, a new mineral (in Japanese). Chigaku Kenkyu, Sakurai Volume: 1-5.
  • 23. Kissin, S.A., Owens, D.R., 1986. The crystallography of sakuraiite. Canadian Mineralogist, 24: 679-683.
  • 24. Kooiman, G.J.A., Ruitenberg, A.A., 1992. Indium deposits and their economic potential: report on a mission to Japan. New Brunswick Department of Natural Resources and Energy, Mineral Resources, Geoscience Report, 92-3.
  • 25. Kowalski, W., Karwowski, Ł, Śmietańska, I., Do Van Phi., 1978. Ore mineralization of the Stara Kamienica Schist Belt in the Izera Mountains (in Polish with English summary). Prace Naukowe Uniwersytetu Śląskiego, 243: 7-89.
  • 26. Kozłowski, A., Wiszniewska, J., Metz, P., 1988. Garnet-bearing parageneses of the tin deposits in the Stara Kamienica Chain, Lower Silesia. Fortschritte der Mineralogie, 66: 85-86.
  • 27. Kucha, H., Mochnacka, K., 1987. Preliminary report on bismuth minerals from the Gierczyn tin deposit, Lower Silesia, Poland. Mineralogica Polonica, 17: 55-61.
  • 28. Lokanc, M., Eggert, R., Redlinger, M., 2015. The Availability of Indium: the Present, Medium Term, and Long Term, National Renewable Energy Laboratory (NREL) report (https://www.nrel.gov/docs/fy16osti/62409.pdf).
  • 29. Małek, R., Mikulski, S.Z., 2019. Geochemical-mineralogical research of the rare and associated element concentrations within cassiterite-sulphide mineralization in the Stara Kamienica schist belt in the Western Sudetes - preliminary results (in Polish with English summary). Przegląd Geologiczny, 67: 179-182.
  • 30. Małek, R., Mikulski, S.Z., Chmielewski, A., 2019. The geochemical-mineralogical characteristic of cassiterite-sulphide mineralization in the historic Saint John and Saint Leopold shafts in the Stara Kamienica schist belt (Western Sudetes) (in Polish with English summary). Przegląd Geologiczny, 67: 910-920.
  • 31. Mazur, S., Aleksandrowski, P., Kryza, R., Oberc-Dziedzic, T., 2006. The Variscan orogen in Poland. Geological Quarterly, 50 (1): 89-118.
  • 32. Michniewicz, M., Bobiński, W., Siemiątkowski, J., 2006. Tin mineralization in the middle part of the Stara Kamienica Schist Belt (Western Sudetes) (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 186: 1-137.
  • 33. Mikulski, S.Z., 2007. Metal ore potential of the parent magma of granite - the Karkonosze massif example. Archivum Mineralogiae Monograph, 1: 123-145.
  • 34. Mikulski, S.Z., Małek, R., 2019. Indium and other critical elements enrichment in cassiterite-sulphide mineralization from the stratiform tin deposits in the West Sudetes (SW Poland). 15th SGA Biennial Meeting, 27-30 August 2019, Glasgow, Scotland, 4: 1818-1821.
  • 35. Mikulski, S.Z., Stein, H.J., 2011. Re-Os age for molybdenite from the Variscan Karkonosze massif and its eastern metamorphic cover (SW Poland). Proceedings of the 11th SGA Biennial Meeting, Antofagasta, 130-133. Ediciones Universidad Católica del Norte; Antofagasta.
  • 36. Mikulski, S.Z., Kozłowski, A., Speczik, S., 2007. Fluid inclusion study of gold-bearing quartz-sulphide veins and cassiterite from the Czarnow As deposit ore (SW Poland). Proceedings of the Ninth Biennial SGA Meeting, Dublin 2007: 805-808.
  • 37. Mikulski, S.Z., Oszczepalski, S., Sadłowska, K., Chmielewski, A., Małek, R., 2018. The occurrence of associated and critical elements in the selected documented Zn-Pb, Cu-Ag, Fe-Ti-V, Mo-Cu-W, Sn, Au-As and Ni deposits in Poland (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 472: 21-52.
  • 38. Mikulski, S.Z., Oszczepalski, S., Sadłowska, K., Chmielewski, A., Małek, R., 2020a. Trace element distributions in the Zn-Pb (Mississippi valley-type) and Cu-Ag (Kupferschiefer) sediment-hosted deposits in Poland. Minerals, 10: 1-47.
  • 39. Mikulski, S.Z., Williams, I.S., Stein, H.J., Wierchowiec, J., 2020b. Zircon U-Pb Dating of Magmatism and Mineralizing Hydrothermal Activity in the Variscan Karkonosze Massif and Its Eastern Metamorphic Cover (SW Poland). Minerals, 10: 787.
  • 40. Mochnacka, K., 1986. Structures and textures of ores from the Gierczyn tin ore deposit (Sudetes, Poland) and their genetic interpretation. Mineralogica Polonica, 16: 85-96.
  • 41. Mochnacka, K., Oberc-Dziedzic, T., Mayera, W., Pieczka, A., 2015. Ore mineralization related to geological evolution of the Karkonosze-Izera Massif (the Sudetes, Poland) - towards a model. Ore Geology Reviews, 64: 215-238.
  • 42. Momma, K., Miyawaki, R., Matsubara, S., Shigeoka, M., Nagase, T., Kamada, S., Ozawa, S., Ohtani, E., Shimizu, M., Kato, A., 2017. The crystal chemistry of sakuraiite. Acta Crystallographica Section A: Foundations and Advances, 73: 910.
  • 43. Murao, S., Furuno, M., 1990. Indium-Bearing Ore from the Goka Mine Naegi District, Southwestern Japan. Mining Geology, 40: 35-42.
  • 44. Murao, S., Deb, M., Furuno, M., 2008. Mineralogical evolution of indium in high grade tin-polymetallic hydrothermal veins - a comparative study from Tosham, Haryana state, India and Goka, Naegi district, Japan. Ore Geology Reviews, 33: 490-504.
  • 45. Nakai, I., Sugitani, Y., Nagashima, K., Niwa, Y., 1978. X-ray photoelectron spectroscopic study of copper minerals. Journal of Inorganic and Nuclear Chemistry, 40: 789-791.
  • 46. Nechayev, I., 1987. Native indium and Fe in tin-bearing greisens of the Ukrainian Shield (in Russian with English summary). Mineralogicheskiy Zhurnal, 9: 74-78.
  • 47. Ohta, E., 1989. Occurrence and chemistry of indium-containing minerals from the Toyoha mine, Hokkaido, Japan. Mining Geology, 36: 355-372.
  • 48. Ohta, E., 1995. Common features and genesis of tin-polymetallic veins. Resource Geology Special Issue, 18: 187-195.
  • 49. Pavlova, G.G., Palessky, S.V., Borisenko, A.S., Vladimirov, A.G., Seifert, T., Luu Anh, P., 2015. Indium in cassiterite and ores of tin deposits. Ore Geology Reviews, 66: 99-113.
  • 50. Picot, P., Pierrot, R., 1963. La roquesite, premier mineral d'indium. Bulletin de Minéralogie: Mineral Cristallographie, 86: 7-14.
  • 51. Piestrzyński, A., Mochnacka, K., 2003. Discussion on the sulphide mineralization related to the tin-bearing zones of the Kamienica schist belt Western Sudety Mountains, SW (in Polish with English summary). In: Sudety Zachodnie od wendu do czwartorzędu (eds. W. Ciężkowski, J. Wojewoda and A. Żelaźniewicz): 169-182. WIND, Wrocław.
  • 52. Piestrzyński, A., Mochnacka, K., Mayer, W., Kucha, H., 1990. Scheelite and ferberite from the tin-bearing schists of the Kamienica Range (the Sudetes, SW Poland). Mineralogica Polonica, 21: 5-14.
  • 53. Piestrzyński, A., Mochnacka, K., Mayer, W., Kucha, H., 1992. Native gold (electrum), Fe-Co-Ni arsenides and sulphoarsenides in the mica schists from Przecznica, the Kamienica Range, SW Poland. Mineralogica Polonica, 23: 27-43.
  • 54. Pietrzela, A., 2019. Reassessment of Sn-Co mineralization in mica schists of the Krobica-Gierczyn area (SW Poland). 15th SGA Biennial Meeting, 27-30 August 2019, Glasgow, Scotland, 4: 1454-1457.
  • 55. Sahlström, F., Arribas, A., Dirks, P., Corral, I., Chang, Z., 2017. Mineralogical distribution of germanium, gallium and indium at the Mt Carlton high-sulfidation epithermal deposit, NE Australia, and comparison with similar deposits worldwide. Minerals, 7: 1-28.
  • 56. Savko, K.A., Bazikov, N.S., 2011. Phase equilibria of bastnaesite, allanite and monazite: bastnaesite-out isograde in metapelites of the Vorontsovskaya Group, Voronezh Crystalline Masiff. Petrology, 19: 445-469.
  • 57. Schwarz-Schampera, U., 2014. Indium. In: Critical Metals Handbook (ed. G. Gunn). Wiley-Blackwell, London.
  • 58. Schwarz-Schampera, U., Herzig, P.M., 2002. Indium. Geology, Mineralogy, and Economics. Springer, Berlin.
  • 59. Shimizu, M., Kato, A., Shiozawa, T., 1986. Sakuraiite: chemical composition and extent of (Zn,Fe)In-for-CuSn substitution. Canadian Mineralogist, 24: 405-410.
  • 60. Smulikowski, W., 1972. Petrogenetic and structural problems of the northern cover of the Karkonosze Granite (in Polish with English summary). Geologica Sudetica, 6: 97-188.
  • 61. Speczik, S., Wiszniewska, J., 1984. Some comments about stratiform tin deposits in the Stara Kamienica Chain (southwestern Poland). Mineralium Deposita, 19: 171-175.
  • 62. Stevens, L.G., White, C.E.T., 1990. Indium and Bismuth. Metals Handbook, 2, ASM International, USA.
  • 63. Szałamacha, M., 1976. On the origin of cassiterite mineralization in the metamorphic schists of the Karkonosze-Góry Izerskie (Mts.) Block, the Sudetes. In: The Current Metallogenic Problems of Central Europe (ed. J. Fedak): 343-349. Wyd. Geol., Warszawa.
  • 64. Szałamacha, M., Szałamacha, J., 1974. Geological and petrographic characteristic of schists mineralized with cassiterite on the basis of materials from the quarry at Krobica (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 279: 59-89.
  • 65. Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution. The Materials Information Society, Ohio.
  • 66. Torró, L., Melgarejo, J.C., Gemmrich, L., Mollinedo, D., Cazorla, M., Martínez, Á., Pujol-Solà, N., Farré-de-Pablo, J., Camprubí, A., Artiaga, D., Torres, B., Alfonso, P., Arce, O., 2019. Spatial and temporal controls on the distribution of indium in xenothermal vein-deposits: the Huari Huari district, Potosí, Bolivia. Minerals, 9: 304.
  • 67. Wager, L.R., van Smit, R., Irving, H., 1958. Indium content of rocks and minerals from the Skaergaard intrusion, East Greenland. Geochimica et Cosmochimica Acta, 13: 81-86.
  • 68. Wiszniewska, J., 1983. Origin of tin mineralization of the Izera schists in Kamienieckie Range (Sudetes). Archiwum Mineralogiczne, 38: 45-55.
  • 69. Wiszniewska, J., 1984. The genesis of ore-mineralization of the Izera schists in the Kamienieckie Range (Sudetes) (in Polish with English summary). Archiwum Mineralogiczne, 40: 115-187.
  • 70. Wiszniewska, J., Kozłowski, A., Metz, P., 1998. Significance of the composition of garnet to clarify the origin of tin mineralization in the Stara Kamienica schist belt, southwest Poland. Proc. of IX-th Qadrennial Symp. IAGOD Beijing, China, Stuttgart: 463-473.
  • 71. Yamanaka, T., Kato, A., 1976. Mossbauer effect study of 57Fe and 119Sn in stannite, stannoidite and mawsonite. American Mineralogist, 61: 260-265.
  • 72. Yáñez, J., Alfonso, P., 2014. Mineralogy of the Chaparra lOCG deposit, southern Peru. In EGU General Assembly Conference Abstracts, 16: https://meetingorganizer.copernicus.org/EGU2014/EGU2014-15675.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe576eee-bbf0-424c-a018-3c6bd78bffbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.