PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sintering and Microstructures of SUS 316L Powder Produced by 3D Printing Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selective laser sintering (SLS) is a type of laminating sintering technique, using CO2 laser with (metal, polymer, and ceramic) powders. In this result, the flake SUS 316L was used to achieve a high porous product, and compare to spherical type. After SLS, the porosity of flake-type sample with 34% was quite higher than that of the spherical-type one that had only 11%. The surface roughness of the flake SLS sample were also investigated in both inner and surface parts. The results show that the deviation of the roughness of the surface part is about 64.40μm, while that of the internal one was about 117.65μm, which presents the containing of high porosity in the uneven surfaces. With the process using spherical powder, the sample was quite dense, however, some initial particles still remained as a result of less energy received at the beneath of the processing layer.
Twórcy
autor
  • School of Materials Science and Engineering, University of Ulsan, Daehak-Ro 93, Nam-Gu, Ulsan, 44610, Korea (Republic of)
autor
  • School of Materials Science and Engineering, University of Ulsan, Daehak-Ro 93, Nam-Gu, Ulsan, 44610, Korea (Republic of)
autor
  • School of Materials Science and Engineering, University of Ulsan, Daehak-Ro 93, Nam-Gu, Ulsan, 44610, Korea (Republic of)
autor
  • School of Materials Science and Engineering, University of Ulsan, Daehak-Ro 93, Nam-Gu, Ulsan, 44610, Korea (Republic of)
autor
  • School of Mechanical Engineering, University of Ulsan, Daehak-Ro 93, Nam-Gu, Ulsan, 44610, Korea (Republic of)
autor
  • School of Materials Science and Engineering, University of Ulsan, Daehak-Ro 93, Nam-Gu, Ulsan, 44610, Korea (Republic of)
Bibliografia
  • [1] C.R. Deckard, J.J. Beaman, P. 14th Conf. Prod. Res. Technol., Michigan 447-451 (1987).
  • [2] J.P. Kruth, G. Levy, F. Klocke, T.H.C. Child, CIRP Ann. Manuf. Technol. 56, 730-759 (2007).
  • [3] E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Prog. Mater. Sci. 74, 401-477 (2015).
  • [4] H.H. Nguyen, M.T.Nguyen, W.J. Kim, H.Y. Kim, S.G. Park, J.C. Kim, J. Korean Powder Metall. Inst. 23 (3), 207-212 (2016).
  • [5] Y.M. Kim, E.P. Kim, S.T. Chung, S. Lee, J.W. Noh, S.H. Lee, Y.S. Kwon, J. Korean Powder Metall. Inst. 20 (4), 264-268 (2013).
  • [6] D.D. Gu,W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57 (3), 133-164 (2012).
  • [7] Wohlers Report 2014, 3D Printing and Additive Manufacturing State of the Industry AnnualWorldwide Progress Report, ISBN 978-0-9913332-0-2.
  • [8] S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Int. J. Adv. Manuf. Technol. 67, 1191-1203 (2013).
  • [9] W.E. Frazier, J. Mater. Eng. Perform. 23, 1917-1928 (2014).
  • [10] E. Yasa, J.-P. Krutha, Procedia Engineering 19, 389-395 (2011).
  • [11] E. Goode, Adv. Mater. Process. 161, 66-67 (2003).
  • [12] S. Kumar, JOM-J. Min. Met. Mat. S. 55 (10), 43-47 (2003).
  • [13] J.P. Kruth, X. Wang, T. Laoui, L. Froyen, Assembly Autom. 23, 357-371 (2003).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe55f6de-dd93-4f45-8311-bc8718b4e7be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.