PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microscopic Analysis of Activated Sludge in Industrial Textile Wastewater Treatment Plant

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relationship between a quality of activated sludge microbiota and wastewater treatment plant (WWTP) operational stability has been defined in the past few decades. However, this dependence is not so clear in the case of industrial wastewater treatment. In this article, a very specific example of industrial textile wastewater treatment plant (ITWTP) is analyzed. Textile effluents are well known as highly contaminated wastewater containing many biodegradable compounds. Microscopic analysis included flocs morphology examination, attempts to evaluate the Sludge Biotic Index (SBI), and identification of dominant filamentous microorganisms. Routine operational control of ITWTP covered pH, temperature, redox potential, dissolved oxygen and COD measurements. The average ecosystem existing in the described ITWTP differed significantly compared to municipal WWTPs. The flocs were smaller and irregular. Filamentous bacteria did not cause foaming although filaments index reached 4. Nostocoida limicola I dominated with significant amounts of type 0041 and type 021N. The evaluation of SBI was impossible as the most of protozoan was in the form of cysts. The overall microbiota diversity correlated with COD removal in activated sludge unit of ITWTP.
Rocznik
Strony
358--364
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
  • Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
  • Bilinski Textile Company, Konstantynow Lodzki, Poland
Bibliografia
  • [1] Bhatia, D., Sharma, N. R., Singh, J., Kanwar, R. S. (2017). Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 47, 1836–1876.
  • [2] Rosi, O. L., Casarci, M., Mattioli, D., Florio, L. (2007). De best available technique for water reuse in textile SMEs (BATTLE LIFE Project). Desalination, 206, 614–619.
  • [3] The European Commission Integrated Pollution Prevention and Control. (2003). Reference document on best available techniques for the textiles industry, 626.
  • [4] Correia, V. M., Stephenson, T., Judd, S. J. (1994). Characterisation of textile wastewaters - a review. Environmental Technology (United Kingdom), 15, 917–929.
  • [5] Paździor, K., Bilińska, L., Ledakowicz, S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering Journal, 376, 120597.
  • [6] Sójka-Ledakowicz, J., Kos, L., Żyłła, R., Paździor, K., Ledakowicz, S. (2017). Studies on the use of water reclaimed from textile wastewater in a closed circuit. Fibres and Textiles in Eastern Europe, 25, 61–66.
  • [7] Motta, M. Da, Pons, M. N., Roche, N., Vivier, H. (2001). Characterisation of activated sludge by automated image analysis. Biochemical Engineering Journal, 9, 165–173.
  • [8] Modin, O., Persson, F., Wilén, B. M., Hermansson, M. (2016). Nonoxidative removal of organics in the activated sludge process. Critical Reviews in Environmental Science and Technology, 46, 635–672.
  • [9] Eikelboom, D. H. (2000). Process Control of Activated Sludge Plants by Microscopic Investigation. IWA Publishing (London).
  • [10] Madoni, P., Davoli, D., Gibin, G. (2000). Survey of filamentous microorganisms from bulking and foaming activated-sludge plants in Italy. Water Research, 34, 1767–1772.
  • [11] Andreadakis, A. D. (1993). Physical and chemical properties of activated sludge flocs. Water Research, 27, 1707–1714.
  • [12] Frijters, C. T. M. J., Vos, R. H., Scheffer, G., Mulder, R. (2006). Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system. Water Research, 40, 1249–1257.
  • [13] Asensi, E., Alemany, E., Duque-Sarango, P., Aguado, D. (2019). Assessment and modelling of the effect of precipitated ferric chloride addition on the activated sludge settling properties. Chemical Engineering Research and Design 150, 14–25.
  • [14] Sowinska, A., Pawlak, M., Mazurkiewicz, J., Pacholska, M. (2017). Comparison of the results from microscopic tests concerning the quality of activated sludge and effluent. Water (Switzerland), 9, 1–14.
  • [15] Madoni, P. A. (1994). Sludge Biotic Index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis. Water Research, 28, 67–75.
  • [16] Dubber, D., Gray, N. F. (2011). The influence of fundamental design parameters on ciliates community structure in Irish activated sludge systems. European Journal of Protistology, 47, 274–286.
  • [17] Bernat, K., Kulikowska, D., Drzewicki, A. (2017). Microfauna community during pulp and paper wastewater treatment in a UNOX system. European Journal of Protistology, 58, 143–151.
  • [18] Drzewicki, A., Kulikowska, D. (2011). Limitation of Sludge Biotic Index application for control of a wastewater treatment plant working with shock organic and ammonium loadings. European Journal of Protistology, 47, 287–294.
  • [19] Araújo dos Santos, L., Ferreira, V., Pereira, M. O., Nicolau, A. (2014). Relationship between protozoan and metazoan communities and operation and performance parameters in a textile sewage activated sludge system. European Journal of Protistology, 50, 319–328.
  • [20] Arévalo, J., Moreno, B., Pérez, J., Gómez, M. A. (2009). Applicability of the Sludge Biotic Index (SBI) for MBR activated sludge control. Journal of Hazardous Materials, 167, 784–789.
  • [21] Choo, K. H., Lee, C. H. (1996). Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor. Water Research, 30, 1771–1780.
  • [22] Capodici, M., Bella, G. Di, Nicosia, S., Torregrossa, M. (2014). Effect of chemical and biological surfactants on activated sludge of MBR system: Microscopic analysis and foam test. Bioresource Technology, 177, 80–86.
  • [23] Baldwin, D. D., Campbell, C. E. (2001). Short-term effects of low pH on the microfauna of an activated sludge wastewater treatment system. Water Quality Research Journal of Canada, 36, 519–535.
  • [24] Paździor, K., Wrębiak, J., Ledakowicz, S. (2020). Treatment of industrial textile wastewater in biological aerated filters – Microbial diversity analysis. Fibres and Textiles in Eastern Europe, 28, 106–114.
  • [25] Paździor, K., Klepacz-Smółka, A., Wrȩbiak, J., Liwarska-Bizukojc, E., Ledakowicz, S. (2016). Biodegradability of industrial textile wastewater - Batch tests. Water Science and Technology, 74.
  • [26] Ferrer-Polonio, E., Fernández-Navarro, J., Alonso-Molina, J. L., Mendoza-Roca, J. A., Bes-Piá, A., Amorós, I. (2019). Towards a cleaner wastewater treatment: Influence of folic acid addition on sludge reduction and biomass characteristics. Journal of Cleaner Production, 232, 858–866.
  • [27] Levlin, E. (2010). Conductivity measurements for controlling municipal waste-water treatment. Joint Polish - Swedish Reports, 15, 51–62.
  • [28] Gottschalk, C., Libra, J. A., Saupe, A. (2010). Ozonation of water and waste water : A practical guide to understanding ozone and its applications. Wiley-VCH.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe55f112-e7bf-41c5-9e8f-a51d70f9e3e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.