Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper analyzes the impact of urban areas on the state of water objects which are under the influence of these areas. Furthermore, the temporal regularities of the oscillations in electrical conductivity in a number of water objects in Lozova Town and Lozova District (Ukraine) were obtained using the method of conductometry. It was discovered that there was no significant anthropogenic impact on the studied water objects in Lozova Town and Lozova District of Kharkiv Region. The fluctuations in conductivity are mainly related to surface runoff. It was shown that the water in Lozova Town and Lozova District is characterized by electrical conductivity values in the range from 2000 μS to 3000 μS.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
59--66
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
- Department of Occupational, Technogenic and Environmental Safety, National University of Civil Defence of Ukraine, Chernyshevska St., 94, 61023, Kharkiv, Ukraine
autor
- Chemical Metrology Department, Kharkiv National University named by V.N. Karazin, Svobody Sq., 4, 61022, Kharkiv, Ukraine
autor
- Scientific Department of Problems of Civil Protection and Technogenic and Ecological Safety of the Scientific and Research Center, National University of Civil Defenсe of Ukraine, Chernyshevska St., 94, 61023, Kharkiv, Ukraine
autor
- Department of Organization of Research and Patent Activities of the Research Center, National University of Civil Defenсe of Ukraine, Chernyshevska St., 94, 61023, Kharkiv, Ukraine
autor
- Department of Fire Prevention and Life Safety of the Civilian Population, Institute of Public Administration and Research in Civil Protection, Rybalskа St., 18, 01011, Kyiv, Ukraine
autor
- Institute of Public Administration and Research in Civil Protection, Rybalskа St., 18, 01011, Kyiv, Ukraine
Bibliografia
- 1. Abramov Y.A., Basmanov O.E., Salamov J., Mikhayluk A.A. 2018. Model of thermal effect of fire within a dike on the oil tank. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 95–100. DOI: 10.29202/nvngu/2018-2/12.
- 2. Andronov V., Pospelov B., Rybka E. 2016. Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects. EasternEuropean Journal of Enterprise Technologies, 4 (5), 38 44. DOI: 10.15587/1729-4061.2016.75063.
- 3. Attua E.M., Annan S.T., Nyame F. 2014. Water quality analysis of rivers used as drinking sources in artisanal gold mining communities of the AkyemAbuakwa area: A multivariate statistical approach. Ghana Journal of Geography, 6, 24–41. https://www.ajol.info/index.php/gjg/article/view/111132.
- 4. Baluch M.A., Hashmi H.N. 2019. Investigating the Impact of Anthropogenic and Natural Sources of Pollution on Quality of Water in Upper Indus Basin (UIB) by Using Multivariate Statistical Analysis. Journal of Chemistry, 2019, Article ID 4307251. https://doi.org/10.1155/2019/4307251.
- 5. Bezsonnyi V., Tretyakov O., Khalmuradov B., Ponomarenko R. 2017. Examining the dynamics and modeling of oxygen regime of chervonooskil water reservoir. Eastern-European Journal of Enterprise Technologies, 5(10), 32–38.
- 6. Bojarczuk A., Jelonkiewicz Ł., Lenart-Boroń A. 2018. The effect of anthropogenic and natural factors on the prevalence of physicochemical parameters of water and bacterial water quality indicators along the river Białka, southern Poland. Environmental science and pollution research international, 25(10), 10102–10114. https://doi.org/10.1007/s11356-018-1212-2.
- 7. DSanPiN 2.2.4-171-10 Hygienic requirements for drinking water intended for human consumption. Order of the Ministry of Health Protection of Ukraine dated 12.05.2010 No. 400. URL: https://zakon.rada.gov.ua/laws/show/z0452-10#Text (in Ukrainian).
- 8. Dvorkin V.I. 2001. Metrology and quality assurance of quantitative chemical analysis, Chemistry, Moscow. (in Russian).
- 9. Dubinin D., Korytchenko K., Lisnyak A., Hrytsyna I., Trigub V. 2018. Improving the installation for fire extinguishing with finely dispersed water. EasternEuropean Journal of Enterprise Technologies, 2(10), 38–43.
- 10. EEA Report No 26/2016. 2016. Rivers and lakes in European cities. Past and future challenges. European Environment Agency. URL: https://www.eea.europa.eu/publications/rivers-and-lakes-in-cities.
- 11. Glińska-Lewczuk K., Gołaś I., Koc J., Gotkowska-Płachta A., Harnisz M., Rochwerger A. 2016. The impact of urban areas on the water quality gradient along a lowland river. Environmental monitoring and assessment, 188(11), 624. https://doi.org/10.1007/s10661-016-5638-z.
- 12. ISO 5667-4:2016. Water quality – Sampling Part 4: Guidance on sampling from lakes, natural and man-made.
- 13. ISO 5667-6:2014. Water quality — Sampling — Part 6: Guidance on sampling of rivers and streams.
- 14. Jha P., Banerjee S., Bhuyan P., Sudarshan M., Dewanji A. 2020.Elemental distribution in urban sediments of small waterbodies and its implications: a case study from Kolkata, India. Environ. Geochem. Health, 42(2), 461–482. doi: 10.1007/s10653-019-00377-5.
- 15. Khatri N., Tyagi S. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1), 23–39, DOI: 10.1080/21553769.2014.933716.
- 16. Koop S.H.A., van Leeuwen C.J. 2017. The challenges of water, waste and climate change in cities. Environment, Development and Sustainability, 19(2), 385–418. https://doi.org/10.1007.
- 17. Loboichenko V., Strelec V. 2018. The natural waters and aqueous solutions express-identification as element of determination of possible emergency situation. Water and Energy International, 61r (90), 43–50.
- 18. Loboichenko V., Andronov V., Strelets V., Oliinykov O., Romaniak M. 2020a. Study of the State of Water Bodies Located within Kharkiv City (Ukraine). Asian Journal of Water, Environment and Pollution. 17( 2),15–21.
- 19. Loboichenko V., Strelets V., Leonova N., Malko A., Ilyinskiy O. 2020b. Comparative Analysis Of Anthropogenic Impact On Surface Waters In Kharkiv Region. Indian journal of Environmental Protection, 40 (2), 134–139.
- 20. Luo P, Kang S, Apip, Zhou M, Lyu J, Aisyah S, et al. 2019. Water quality trend assessment in Jakarta: A rapidly growing Asian megacity. PLoS ONE 14(7): e0219009. https://doi.org/10.1371/journal.pone.0219009.
- 21. Marks, S.J., Clair-Caliot, G., Taing, L. et al. 2020. Water supply and sanitation services in small towns in rural–urban transition zones: The case of Bushenyi-Ishaka Municipality, Uganda. npj Clean Water, 3, 21. https://doi.org/10.1038/s41545-020-0068-4
- 22. McGrane S.J. 2016. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review, Hydrological Sciences Journal, 61(13), 2295 2311, DOI: 10.1080/02626667.2015.1128084.
- 23. Omarova A., Tussupova K., Hjorth P., Kalishev M., & Dosmagambetova R. 2019. Water Supply Challenges in Rural Areas: A Case Study from Central Kazakhstan. International journal of environmental research and public health, 16(5), 688. https://doi.org/10.3390/ijerph16050688.
- 24. Parris K. 2011. Impact of Agriculture on Water Pollution in OECD Countries: Recent Trends and Future Prospects, International Journal of Water Resources Development, 27(1), 33–52. DOI: 10.1080/07900627.2010.531898
- 25. Pospelov B., Rybka E., Meleshchenko R., Borodych P., Gornostal S. 2019. Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1(10), 29–35.
- 26. Rui Y., Fu D., Do Minh H., Radhakrishnan M., Zevenbergen C., Pathirana A. 2018. Urban Surface water quality, flood water quality and human health impacts in Chinese cities. What do we know? Water, 10(3), 240. https://doi.org/10.3390/w10030240.
- 27. Zia H., Harris N.R., Merrett G.V., Rivers M., Coles N. 2013. The impact of agricultural activities on water quality: A case for collaborative catchmentscale management using integrated wireless sensor networks. Computers and Electronics in Agriculture, 96, 126–138. https://doi.org/10.1016/j.compag.2013.05.001.
- 28. Ramachandra T.V., Bharath A.H., Sowmyashree M.V. 2015. Monitoring urbanization and its implications in a mega city from space: spatiotemporal patterns and its indicators. J. Environ. Manage. 148, 67–81. DOI: 10.1016/j.jenvman.2014.02.015.
- 29. Sładkowski A. (Ed.). 2020. Ecology in Transport: Problems and Solutions. Springer International Publishing. DOI: 10.1007/978-3-030-42323-0.
- 30. Tiutiunyk V., Kalugin V., Pysklakova O., Levterov A., Zakharchenko J. 2019. Development of Civil Defense Systems and Ecological Safety. IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T), 295–299. DOI: 10.1109/PICST47496.2019.9061569
- 31. Shen S. 2019. Blue City Water Quality Index. URL: https://www.chinawaterrisk.org/opinions/blue-city-water-quality-index/
- 32. Tu J. 2013. Spatial variations in the relationships between land use and water quality across an urbanization gradient in the watersheds of Northern Georgia, USA. Environ. Manage. 51(1), 1–17. DOI: 10.1007/s00267-011-9738-9.
- 33. Tutusaus M., Schwartz K. 2018. Water services in small towns in developing countries: at the tail end of development. Water Policy, 20 (S1): 1–11. DOI: https://doi.org/10.2166/wp.2018.001.
- 34. Zhao W., Zhu X., Sun X., Shu Y., Li Y. 2015. Water quality changes in response to urban expansion: spatially varying relations and determinants. Environ. Sci. Pollut. Res. Int. 22(21), 16997–17011. DOI: 10.1007/s11356-015-4795-x.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe558c11-c02c-4571-8e52-94d007b83a6b