PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the energy losses due to tracks vibrations in rubber track crawler vehicles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In spite of an increasing number of rubber-tracked vehicles, there are no engineering models for predicting and optimizing the energy consumption of vehicles of this type. To formulate those models, the models of the phenomena resulting in the internal losses of rubber-track systems need to be developed. This article presents a model describing the losses caused by the transverse vibrations of rubber tracks. The predictions made using the model are discussed against the background of the preliminary experimental tests on a sample rubber track for heavy off-road vehicles. The model predictions and the experimental tests suggest that the losses caused by the 1st mode vibration of rubber tracks are marginal in relation to the total internal resistance of rubber-track systems. However, according to the model predictions, a significant increase in the rubber-tracked undercarriage internal resistance is expected as a result of the high-amplitude track vibrations corresponding to the higher-order modes. To make the model applicable in practice, a method for determining the essential parameters of the model, including the bending stiffness and the decrement of oscillation damping, is demonstrated. The accuracy of the method is confirmed by the computations, where the sag and the frequency of the 1st mode free vibration of a sample track are predicted with an error of 10% and 1.8%, respectively. The parameter values obtained by this method are suitable for modeling a wide variety of off-road vehicles. The method can be applied to many other types of reinforced rubber belts, e.g., conveyor belts.
Rocznik
Strony
303--323
Opis fizyczny
Bibliogr. 41 poz., rys., wykr.
Twórcy
  • Department of Off-Road Machine and Vehicle Engineering, Mechanical Faculty, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Off-Road Machine and Vehicle Engineering, Mechanical Faculty, Wrocław University of Science and Technology, Wrocław, Poland
  • IBAF-Institut Für Baumaschinen, Antriebs- Und Fördertechnik GmbH, Bochum, Germany
  • Ruhr-Universität Bochum, Bochum, Germany
Bibliografia
  • [1] Arczewski K, Pietrucha J, Szuster JT. Vibrations in physical systems. Warsaw: Warsaw University of Technology Publishing House; 2014. (in Polish).
  • [2] Bekker MG. Introduction to terrain-vehicle systems. Ann Arbor: University of Michigan Press; 1969.
  • [3] Chołodowski J, Dudziński P. A method for experimental identification of bending resistance of reinforced rubber belts. In: Baranowski P, Kędzierski P, Szurgott A, editors. Computational technologies in engineering: Proceedings of the 15th conference on computational technologies in engineering. Melville: AIP Publishing; 2019.
  • [4] Chołodowski J, Dudziński P, Ketting M. A method for predicting the internal motion resistance of rubber-tracked undercarriages, Pt. 3. A research on bending resistance of rubber tracks. Unpublished, submitted to Journal of Terramechanics.
  • [5] Claas GmbH & Co. KGaA. Technical Data AXION 960–920. https:// www. claas. co. uk/ produ cts/ tract ors/ axion 960- 920- 2020. Accessed 20 Sep 2020.
  • [6] Claas GmbH & Co. KGaA. Technical Data LEXION 8900–7400 HRC. https:// www. claas. co. uk/ produ cts/ combi nes/ lexion- 8900-7400. Accessed 20 Sept 2020.
  • [7] Cleare GV. Factors affecting the performance of high-speed track layers. In: Proceedings of the institution of mechanical engineers. 2A. 1963–64; 178/1: 51–71.
  • [8] Dąbrowska A, Łopatka MJ, Rubiec A. Experimental research on a hydrostatic drive system for a light-weight unmanned land platform (Badania hydrostatycznego układu napędu jazdy lekkiej bezzałogowej platform lądowej). In: XXV Konferencja Problemy Rozwoju Maszyn Roboczych. Zakopane; 2012. (in Polish).
  • [9] Dudziński P, Gładysiewicz A. On the influence of the ground pressure distribution under tracks on the tractive performance of off-road vehicles (Wpływ rozkładu nacisków normalnych pod gąsienicą na właściwości trakcyjne pojazdu). Transport Przemysłowy. 2007;30(4/2007):72–6 (in Polish).
  • [10] Dudziński P, Ketting M. New Ideas for Mobile Track Systems with Elastomer Belt Pt. 2.: Hybrid Friction/Positive Drive and Adjustable Belt Tension. In: Dudziński P, Hawrylak H, Hohl G, Ketting M, editors. Off-road machines and vehicles in theory and practice: proceedings of the 1st international conference. Wrocław: ISTVS-East European Office, Wrocław University of Science and Technology; 1996. p. 131–138.
  • [11] Dwyer MJ, Okello JA, Scarlett AJ. A theoretical and experimental investigation of rubber tracks for agriculture. J Terrramech. 1993;30(4):285–98.
  • [12] Ferry J. Viscoelastic properties of polymers. New York: John Wiley and Sons., Inc.; 1961.
  • [13] Gładysiewicz L. Belt conveyors: theory and engineering computations (Przenośniki taśmowe: teoria i obliczenia). Wrocław: Wrocław University of Science and Technology Publishing House; 2003. (in Polish).
  • [14] Hohmann R. Zur kraftübertragung von Antriebstrommeln auf Fördergurte mit Stahlseileinlagen (Ph.D. thesis supervised by Prof. Dr.-Ing. Hans-Heinz Oehmen). Hannover: Technische Universität Hannover; 1975. (in German).
  • [15] Kolkov EI, Vereha ÛN, Proskurâkov VB, Stambrovskip AA. On the internal losses of tracked undercarriages (Zatraty moŝnosti v guseničnom dvižitele). Vestnik bronetankovoj tehniki. 1985; 5. (in Russian).
  • [16] Kong L, Parker RG. Approximate eigensolutions of axially moving beams with small f lexural stiffness. J Sound Vib. 2004;276:459–69.
  • [17] Lachmann H-P. Der Walkiederstand von Gummigurtförderern. Forschung auf dem Gebiete des Ingenieurwesens. 1954;4:97–107 (in German).
  • [18] Marynowski K, Kapitaniak T. Kelvin-Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web. Int J Non-Linear Mech. 2002;37:1147–61.
  • [19] Marynowski K, Kapitaniak T. Zener internal damping in modeling of axially moving viscoelastic beam with time-dependent tension. Int J Non Linear Mech. 2007;42(1):118.
  • [20] Merhof W, Hackbarth E-M. Fahrmechanik der Kettenfahrzeuge. ISBN: 978-3-943207-13-2. 2015. https:// athene- forsc hung. unibw. de/ doc/ 111331/ 111331. pdf. Accessed 6 Feb 2019. (in German).
  • [21] Meyers MA, Chawla KK. Mechanical behavior of materials. Cambridge: Cambridge University Press; 2009.
  • [22] Mężyk A, Czapla T, Klein W, Mura G. Numerical simulation of active track tensioning system for autonomous hybrid vehicle. Mech Syst Signal Process. 2017;89:108–18.
  • [23] Murphy NR Jr. Armored Combat Vehicle Technology. ARMOR the Magazine of Mobile Warfare. 1982;91(5):20–25.
  • [24] Niezgodziński ME, Niezgodziński T. Strength of materials (Wytrzymałość materiałów). Warsaw: PWN; 1984. (in Polish).
  • [25] Ogorkiewicz RM. Technology of tanks. Coulsdon: Janes Information Group, Ltd.; 1991.
  • [26] Okello JA, Dwyer MJ, Cottrell FB. The tractive performance of rubber tracks and a tractor driving wheel tyre as influenced by design parameters. J Agric Engng Res. 1994;59:33–43.
  • [27] Osiński Z. Damping in mechanical vibration (Tumienie drgań mechanicznych). 2nd ed. Warsaw: PWN; 1986. (in Polish).
  • [28] Pieczonka K. Off-Road Vehicle Engineering (Inżynieria maszyn roboczych. Cz. 1. Podstawy urabiania, jazdy, podnoszenia i obrotu). Wrocław: Wrocław University of Science and Technology Publishing House; 2007. (in Polish).
  • [29] Pretlove AJ, Natke HG. Basic vibration theory and its application to beams. In: Bachmann H, Ammann WJ, Delschl F, Eisenmann J, Floegl I, Hirsch GH, Klein GK, Lande GJ, Mahrenholtz O, Natke HG, Nussbaumer H, Pretlove AJ, Rainer JH, Saemann E-U, Steinbeisser L, editors. Vibration problems in structures, practical guidelines. Basel: Birkhäuser Verlag; 1995.
  • [30] Rehorn I. Entwicklung eines Tiefseeraupenfahrzeugs und Untersuchung seiner inneren Fahrwiderstände (Ph.D. thesis supervised by Univ-.Prof. Dr.-Ing. W. Schwarz). Universität-Gesamthochschule Siegen, Aachen: Verlag Shaker; 1994. (in German).
  • [31] Scholar C, Perkins NC. Efficient vibration modelling of elastic vehicle track systems. J Sound Vib. 1999;228(5):1057–78.
  • [32] Schwarz F. Untersuchungen zum Eindrückrollwiederstand zwischen Föredergurt und Tragrolle. Föredern und Heben. 1967;12:25–40 (in German).
  • [33] Skrodzka EB. Experimental modal analysis of the structures of guitars and violins (Eksperymentalna analiza modalna gitar i skrzypiec). Poznań: Adam Mickiewicz University Scientific Publishing House; 2016. (in Polish).
  • [34] Stefanow D. Modelling of the interaction between tracked under-carriages and loose materials (Ph.D. thesis supervised by Prof. Dr. -Ing. habil. Piotr Dudziński). Wrocław: Wrocław University of Science and Technology; 2015. (in Polish).
  • [35] Takano K, Fujiwara H, Matsushita O, Watanabe K, Kanemitsu Y, Okubo H. Vibration and control of axially moving crawler used for tracked vehicles. JSME Int J Ser C Mech Syst Mach Elem Manuf. 2002;45(1):70–8.
  • [36] Vierling A. Untersuchungen über die Bewegungswiderstände von Bandförderanlagen. Fördern und Heben. 1956;2:131–42 (in German).
  • [37] Wallin M, Aboubakar AK, Jayakumar P, Letherwood MD, Gorsich DJ, Hamed A, Shabana AA. A comparative study of joint formulattions: application to multibody system tracked vehicles. Nonlinear Dyn. 2013;74:783–800.
  • [38] Wang P, Rui X, Yu H, Zhang J. Transverse vibration of the upper track of a tracked vehicle with tubular busing in the track pin. Mech Mach Theory. 2019;140:504–19.
  • [39] Watanabe K, Kitano M, Kato H. Evaluation of rolling resistance of rubber track systems. In: Proceedings of the 12th ISTVS international conference. Beijing: China Machine Press; 1996. p. 296–303.
  • [40] Wheeler C, Munzenberger P. Indentation rolling resistance measurement. In: Proceedings of international materials handling conference Beltcon 16. Johannesburg; 2011. p. B16–20.
  • [41] Wong JY. Theory of ground vehicles. 3rd ed. New York: John Wiley & Sons, Inc.; 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe523419-c373-46eb-bc44-c0aed14f5dba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.