PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The assessment of the optimal time window for prediction of seismic hazard for longwall coal mining: the case study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic nature of rock mass damage during mining activity generates seismic events. This article shows, how the time window for the database infuences on the actual status of seismic hazard for the longwall mining area in one of Polish coal mines using Gutenberg–Richter law. A time window of 10–90 days was assumed with similar or shorter prediction times forecast on its basis. Additionally, for each seismic database the hazard prediction accuracy was determined. The analysis shows that the 10- and 20-day base periods are too short for prediction purposes. The higher-energy seismic events sometimes do not occur within such a short period of time, preventing regression analysis and parameter b determination. The best time window for the seismic hazard prognosis in given geological and mining conditions seems to be 30–50 days. The shorter periods cause the underestimation of the seismic hazard prognosis. Low range of tremor energies and the relatively low number of seismic events with high energy cause the low probability of prediction of the seismic mining events (10–40%) of the energy of min. 106 J, even for longer day base periods. The accuracy of hazard prediction, obtained from each seismic database period, was determined, using the developed coefcient of hazard autoregression CN. The analysis of the Gutenberg–Richter distribution should serve as complementary tool of seismic hazard prediction only.
Czasopismo
Rocznik
Strony
691--699
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Faculty of Mining and Geoengineering, AGH University of Science and Technology, Krakow, Poland
  • Faculty of Mining and Geoengineering, AGH University of Science and Technology, Krakow, Poland
  • JSW Innovation, Katowice, Poland
Bibliografia
  • 1. Bishop I, Styles P, Allen M (1993) Mining-induced seismicity in the Nottinghamshire Coalfield. Q J Eng Geol 26:253–279
  • 2. Gibowicz SJ, Kijko A (1994) An introduction to mining seismology. Academic Press, New York
  • 3. Gołda I, Kornowski J (2011) Zastosowanie rozkładu Gutenberga–Richtera do prognozy zagrożenia sejsmicznego, wraz z oceną jego niepewności (Applying the Gutenberg–Richter distribution to predict seismic hazard, along with uncertainty assessment). Górnictwo i Geologia (Min Geol) 6(3):49–62 ((in Polish))
  • 4. Gutenberg B, Richter CF (1954) Seismicity of earth and associated phenomenon, 2nd edn. Princeton Univ. Press, Princeton
  • 5. Kijko A, Funk CW (1994) Assessment of seismic hazard in mining. J South Afr Inst Min Metall 6:179–185
  • 6. Kornowski J, Kurzeja J (2012) Prediction of rockburst probability given seismic energy and factors defined by the expert method of hazard evaluation (MRG). Acta Geophys 60(2):472–486
  • 7. Kołodziejczyk P, Kornowski J, Gołda I (2013) Zagrożenie sejsmiczne od wstrząsów górniczych w warunkach niepewnej informacji (Mine-induced seismic hazard under conditions of uncertain information). Górnictwo i Geologia (Min Geol) 8(2):47–60 ((in Polish))
  • 8. Kulhanek O (2005) Seminar on b–value. Dept. of Geophysics, Charles University, Prague, 10–19 Dec 2005.
  • 9. Kurzeja J, Kornowski J (2013) The basic assumptions of the quantitative version of the comprehensive method of rockburst hazard evaluation. Min Resour Manag 29(2):193–204. https://doi.org/10.2478/gospo-2013-0012
  • 10. Lasocki S, Orlecka-Sikora B (2008) Seismic hazard assessment under complex source size distribution of mining-induced seismicity. Tectonophysics 456:28–37
  • 11. Lasocki S (2008) Some unique statistical properties of the seismic process in mines. In: Southern hemisphere international rock mechanics symposium, SHIRMS, 16–18 Sept 2008, Perth, Western Australia, Australian Centre for Geomechanics (Potvin, Carter, Dyskin & Jeffrey eds.), Perth, Western Australia, pp 667–678
  • 12. Lu C-P, Liu G-J, Liu Y, Zhang N, Xue J-H, Zhang L (2015) Microseismic multi-parameter characteristics of rockburst hazard induced by hard roof fall and high stress concentration. Int J R Mech Min Sci 76:18–32
  • 13. Mendecki A, Lötter E (2018) Modelling seismic hazard for mines. In: Proceedings of: Australian Earthquake Engineering Society, 18–20 November 2011 Barossa Valley, South Australia. https://www.researchgate.net/publication/236183155_Modelling_Seismic_Hazard_for_Mines. Accessed 09 July 2018.
  • 14. Srinivasan C, Aroras SK, Yaj RK (1997) Use of mining and seismological parameters as premonitors of rockbursts. Int J Rock Mech Min Sci 34(6):1001–1008
  • 15. The complex exploitation design of coal seams prone to rockburst hazard in KHW „Murcki-Staszic” hard coal mine for 2014÷2017. KHW, Katowice, Murcki-Staszic” hard coal mine; 2014—unpublished (in Polish)
  • 16. Van Aswegen G (2001) Evaluation of the risk to underground mine personnel due to the rockmass response to continuous mining operations. Report. Sandton: Safety in Mines Research Advisory Committee, ISS International Limited
  • 17. Wesseloo J (2014) Evaluation of the spatial variation of b value. J South Afr Inst Min Metal 114:823–828
  • 18. Wesseloo J (2018) The spatial assessment of the current seismic hazard state for hard rock underground mines. Rock Mech Rock Eng 51:1839–1862. https://doi.org/10.1007/s00603-018-1430-4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe507cb6-f473-4ba4-8974-5122957d706a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.