PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innovative method for heat transfer enhancement through shell and coil side fluid flow in shell and helical coil heat exchanger

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of shell side and coil side volume flow rate on overall heat transfer coefficient, effectiveness, pressure drop and exergy loss of shell and helical coil heat exchanger were studied experimentally under steady state conditions. The working fluid, i.e., water was allowed to flow at three different flow rates of 1, 2, and 3 l/min on shell side (cold water) and at 1, 1.5, 2, 2.5, and 3 l/min on coil side (hot water) for each shell side flow rate at the temperatures of 298±0.4 K and 323±0.4 K, respectively. The results found that the overall heat transfer coefficient increased with increasing both shell side and coil side volume flow rates. The inner Nusselt number significantly increased with the coil side Dean number.
Rocznik
Strony
239--256
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Mechanical Engineering Department, Sandip University, Sijoul-847235, Madhubani, India
  • Mechanical Engineering Department, National Institute of Technology, Patna 800005, India
autor
  • Mechanical Engineering Department, S. V. National Institute of Technology Surat, Gujarat-395007, India
Bibliografia
  • [1] Dewan A., Mahanta P., Raju K.S., Kumar P.S.: Review of passive heat transfer augmentation techniques. Proc. Inst. Mech. Eng. A J. Power Energy 218(2004), 7, 509–527.
  • [2] Kareem Z.S., Jaafar M.N.M., Lazim T.M., Abdullah S., Abdul Wahid A.F.: Heat transfer enhancement in two-start spirally corrugated tube. Alexandria Eng. J. 54(2015), 3, 415–422.
  • [3] Kumar R., Prabhansu, Chandra P.: An experimental investigation of natural convection heat transfer over outer surface of vertical helical coil condenser. J. Eng. Res. 5(2017), 3, 162–173.
  • [4] Andrzejczyk R., Muszyński T.: Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness. Arch. Thermodyn. 37(2016), 4, 137–159.
  • [5] Bohdal T., Charun H., Sikora M.: Pressure drop during condensation of refrigerants in pipe minichannels. Arch. Thermodyn. 33(2012), 1, 87–106.
  • [6] Bohdal T., Charun H., Sikora M.: Heat transfer during condensation of refrigerants in tubular minichannels. Arch. Thermodyn. 33(2012), 2, 3–22.
  • [7] Xin R.C., Ebadian M.A.: The effects of Prandtl numbers on local and average convective heat transfer characteristics in helical pipes. J. Heat Transfer 119 (1997), 3, 467–473.
  • [8] Yildiz C., Bicer Y., Pehlivan D.: Heat transfer and pressure drops in rotating helical pipes. Appl. Energy 50(1995), 1, 85–94.
  • [9] Prabhanjan D.G., Timothy T.J., Raghavan G.S.V.: Natural convection heat transfer from helical coiled tubes. Int. J. Therm. Sci. 43(2004), 4, 359–365.
  • [10] Rennie T.J., Raghavan J.S.V.: Experimental studies of a double-pipe helical heat exchanger. Exp. Therm. Fluid Sci. 29(2005), 8, 919–924.
  • [11] Dabas J.K., Kumar S., Dojeja A.K., Kasana K.S.: Modeling of a cylindrical shell and helical tube condenser of HFC-134a. Heat Transfer-Asian Res. 45(2016), 3, 209–227.
  • [12] Neshat E., Hossainpour S., Bahiraee F.: Experimental and numerical study on unsteady natural convection heat transfer in helically coiled tube heat exchangers. Heat Mass Transfer 50(2014), 6, 877–885.
  • [13] Alimoradi A.: Study of thermal effectiveness and its relation with NTU in shell and helically coiled tube heat exchangers. Case Stud. Therm. Eng. 9(2017), 100–107.
  • [14] Moawed M.: Experimental investigation of natural convection from vertical and horizontal helicoidal pipes in HVAC applications. Energy Convers. Manag. 46 (2005), 18-19, 2996–3013.
  • [15] Moawed M.: Experimental study of forced convection from helical coiled tubes with different parameters. Energy Convers. Manag. 52(2011), 2, 1150–1156.
  • [16] Ali M.E.: Experimental investigation of natural convection from vertical helical coiled tubes. Int. J. Heat Mass Transf. 37(1994), 4, 665–671.
  • [17] Shokouhmand H., Salimpour M.R., Akhavan-Behabadi M.A.: Experimental investigation of shell and coiled tube heat exchangers using Wilson plots. Int. Commun. Heat Mass Transf. 35(2008), 1, 84–92.
  • [18] Pawar S.S., Sunnapwar V.K.: Studies on convective heat transfer through helical coils. Heat Mass Transfer, 49(2013), 12, 1741–1754.
  • [19] Salem M.R., Elshazly K.M., Sakr R.Y., Ali R.K.: Experimental investigation of coil curvature effect on heat transfer and pressure drop characteristics of shell and coil heat exchanger. J. Therm. Sci. Eng. Appl. 7(2014), 1, 11005–11009.
  • [20] Ghias A.S.A., Ananth S.V., Anand M.D., Devadhas G.G.: Experimental study of thermal performance of coil in shell heat exchanger. Indian J. Sci. Tech. 9(2016), 13, 1–17.
  • [21] Alimoradi A., Veysi F.: Optimal and critical values of geometrical parameters of shell and helically coiled tube heat exchangers. Case Stud. Therm. Eng. 10(2017) 73–78.
  • [22] Neshat E., Hossainpour S., Bahiraee F.: Experimental and numerical study on unsteady natural convection heat transfer in helically coiled tube heat exchangers. Heat Mass Transfer 50(2014), 6, 877–885.
  • [23] Dizaji H.S., Jafarmadar S., Hashemian M.: The effect of flow, thermodynamic and geometrical characteristics on exergy loss in shell and coiled tube heat exchangers. Energy 91(2015), 678–684.
  • [24] Purandare P.S., Lele M.M., Gupta R.K.: Investigation on thermal analysis of conical coil heat exchanger. Int. J. Heat Mass Transf. 90(2015), 1188–1196.
  • [25] Naik B.A.K., Vinod A.V.: Heat transfer enhancement using non-Newtonian nanofluids in a shell and helical coil heat exchanger. Exp. Therm. Fluid Sci. 90(2018), 132–142.
  • [26] Kays W., Crawford M., Weigand B.: Convective Heat and Mass Transfer (4th Edn.). McGraw Hill, Singapore 2005.
  • [27] Jayakumar J.S., Mahajani S.M., Mandal J.C., Vijayan P.K., Bhoi R.: Experimental and CFD estimation of heat transfer in helically coiled heat exchangers. Chem. Eng. Res. Des. 86(2008), 3, 221–232.
  • [28] Naphon P.: Thermal performance and pressure drop of the helical-coil heat exchangers with and without helically crimped fins. Int. Commun. Heat Mass Transf. 34(2007), 3, 321–330.
  • [29] Genić S.B., Jaćimović B.M., Jarić M.S., Budimir N.J., Dobrnjac M.M.: Research on the shell-side thermal performances of heat exchangers with helical tube coils. Int. J. Heat Mass Transf. 55(2012), 4295–4300.
  • [30] Zhang Z., Zhang Y., Zhou W., Bai B.: Critical heat balance error for heat exchanger experiment based on entropy generation method. Appl. Therm. Eng. 94(2016) 644–649.
  • [31] Holman J.P.: Experimental Methods For Engineers (7th Ed.). Tata Mcgraw-Hill, New York 2007.
  • [32] Jamshidi N., Farhadi M., Ganji D.D., Sedighi K.: Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers. Appl. Therm. Eng. 51(2013), 1-2, 644–652.
  • [33] Panahi D., Zamzamian K.: Heat transfer enhancement of shell and coiled tube heat exchanger utilizing helical wire turbulator. Appl. Therm. Eng. 115(2017), 607–615.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe4f50d7-b32b-4d68-9f1f-085402521727
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.