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METODA WEKTORÓW NO ŚNYCH I SIECI NEURONOWE  
DO PRZEWIDYWANIA WSKA ŹNIKA AWARYJNO ŚCI  

PRZEWODÓW WODOCI ĄGOWYCH 

Abstract: The failure rate of water pipes was predicted using support vector machines (SVMs) and artificial 
neural networks (ANNs). Both algorithms are regression methods of so called machine learning. Operational data 
from the time span 2001-2012 were used for forecasting purposes. The length, diameter and year of construction 
of the distribution pipes and the house connections were treated as the independent variables. The computations 
were carried out using the Statistica 12.0 software. 
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Introduction 

Failure frequency is one among other indicators taken into account during the 
assessment of the reliability level of water supply systems [1, 2]. Nowadays, typical 
analysis of exploitation data related to the number and kinds of damages should be 
concerned together with the mathematical modelling. There are a lot of models which could 
be used for failure rate prediction [3-5]. They help us to assess the deterioration level of 
water conduits relatively quickly. The regression methods, for example support vector 
machines (SVMs) and artificial neural networks (ANNs) are nowadays very popular in 
solving many complex engineering problems [6-8]. It is the reason why such algorithms, 
based on radial basis functions (RBF), were used in this study to predict the values of 
failure rate of distribution pipes and house connections. The principal aim of this research 
was to find out, if an artificial neural network and support vector machine of the RBF type 
would predict (with an error acceptable for engineering purposes) the failure frequency 
indicator of water conduits 

Materials and methods 

The failure rate [λ, fail./(km·a)] of the house connections and the distribution pipes was 
predicted using the RBF-SVM and the RBF-ANN methods. The two approaches were based 
on radial basis functions. Exploitation data for the years 2001-2012 received from the water 
utility were used for forecasting purposes. In relation to SVM modelling, the whole data set 
was randomly divided into two equal (50%) subsets. The training and the testing sample had 
147 data each for the house connections as well as respectively 124 and 125 data for the 
distribution pipes. The model was built using the training data and then it was tested on 
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different sample. In relation to ANNs, the methodology was a little bit different because of the 
peculiarities of such kind of modelling. The artificial neural network learning process 
consisted of several stages: a training stage (50% of the data), followed by a testing stage 
(25% of the data) and finally, the validation (25% of the data) of the created models. In the 
considered case, the whole data set (294 data for the house connections and 249 data for the 
distribution pipes) was used to learn the ANN. The training, testing and validation samples 
were chosen randomly from the whole data set. The prognosis was done on the basis of the 
unknown previously data set (created separately). The models were built separately for the 
distribution pipes and house connections. The calculations were  done in the programme 
Statistica 12.0. 

The relation between the dependent variables (the predicted value) and the independent 
variable need not to be known because the SVM method is a kind of nonparametric regression 
algorithm. V-fold cross validation was used to find the optimal model parameters [9]. Tenfold 
(V = 10) cross validation was used in the considered problem, whereby it was possible to 
select proper values for such parameters (learning constants) as capacity (C) and epsilon (ε), 
since they are not known a priori. In relation to artificial neural networks, model parameters 
(eg the number of hidden neurons and the type of activation functions) are determined during 
ANN learning using a suitable training algorithm. Many ANN models, for which the number 
of hidden neurons ranged from 1 to 30, were tested. The model characterized by the smallest 
mean-square error and the best fit between the real data and the predicted ones was selected. 
The results presented later in this paper are for this chosen optimal ANN model. 

In both the methods the independent variables were: length (Lr, Lp), diameter (Dr, Dp) the 
year of construction (Yr, Yp) of the distribution pipes and the house connections.  

Results and discussion 

The parameters of the built ANN and SVM models for the different kinds of water 
pipelines are presented in Table 1. The validation error was considered for selecting an SVM 
model most accurately forecasting the failure rate. The validation error for the house 
connections and distribution pipes equalled to respectively 0.11 and 0.08. Nevertheless, the 
failure rate prediction on the basis of the testing sample was not satisfactory from the 
predicted/real data fit point of view. Moreover, the number of SVMs for the distribution pipes 
was high and as much as 82% of them were localized SVMs, ie with weights equal to ± the 
capacity value (Table 1), indicating a more complicated model structure. In the case of any 
kind of modelling, it is necessary to answer the question whether the aim is to obtain a perfect 
data fit at any cost, ie at the expense of model architecture complication, or rather to reveal the 
correlations between the dependent and independent variables.  

In the case of the ANN models, Pearson’s correlation coefficient (R), a determination 
coefficient (R2) and a relative mean-square prediction error (amounting to about 20% for the 
distribution pipes and the house connections) would be compared. The value of this error is 
rather high in comparison to other results obtained using multilayer perceptron instead of 
radial basis functions. According to the literature [10] RBF ANNs were also less useful for 
hourly water demand prediction than the multilayer perceptron. Despite the fact that there 
were three times more hidden neurons in the house connections model than in the distribution 
pipes model (Table 1), the prediction results are worse and characterized by larger 
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discrepancies between the experimental and forecasted data (Figs. 1 and 2). Because of the 
nature of RBF ANNs, the activation functions and the training method were pre-imposed, 
which also can have a bearing on modelling quality in comparison with, eg artificial neural 
networks using the multilayer perceptron, where it is possible to use several different 
functions, such as the sigmoidal function, the exponential function and so on [11]. 

 
Table 1 

Parameters of SVM and ANN models  

Type of conduit/parameter Distribution pipes House connections 
SVM model 

Gamma 0.333 0.333 
Capacity (C) 3 1 
Epsilon (ε) 0.2 0.5 

Number of support vectors (localized) 56 (46) 14 (7) 
 Cross-validation error 0.081 0.110 

ANN model 
Number of hidden neurons 8 27 

Activation functions: hidden/output layer Gaussian/linear Gaussian/linear 
Training algorithm RBFT RBFT 

Correlation coefficient (learning/prognosis step) 0.956/0.859 0.997/0.897 
Determination coefficient (learning/prognosis step) 0.914/0.737 0.994/0.805 

 
The results of failure rate prediction for the learning sample are presented in Table 2 

while the ones for the testing sample (the SVM model) and the prognosis stage (the ANN 
model) are shown in Figures 1 and 2. Such distinction, between the testing sample for the 
SVM model and the prognosis stage for the ANN model, is necessary to draw, since the 
testing sample data and the prognosis stage data were unknown to the model previously. 
Using such approach it is possible to establish the quality of the model and its applicability to 
failure rate prediction. 

 
Table 2 

Results of failure rate prediction - learning step 

Year  
House connections Distribution pipes  

Experimental  ANN-RBF SVM-RBF Experimental ANN-RBF SVM-RBF 
2001 0.94 0.95 1.17 0.34 0.36 0.38 
2002 0.84 0.84 1.16 0.34 0.36 0.38 
2003 1.59 1.58 1.26 0.50 0.47 0.48 
2004 1.07 1.07 1.32 0.37 0.39 0.41 
2005 1.00 1.00 1.32 0.57 0.48 0.52 
2006 1.15 1.15 1.33 0.42 0.42 0.42 
2007 0.83 0.80 1.12 0.31 0.30 0.33 
2008 0.65 0.63 0.79 0.22 0.21 0.22 
2009 0.61 0.62 0.70 0.25 0.25 0.24 
2010 0.50 0.50 0.63 0.27 0.26 0.24 
2011 0.23 0.33 0.57 0.10 0.21 0.20 
2012 0.38 0.38 0.51 0.24 0.25 0.24 

 
An analysis of Table 2 clearly shows that prediction of failure rate λ of house 

connections using the RBF-ANN model is better than for the RBF-SVM model. For the 
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distribution pipes the differences in failure rate predictions between the two modelling 
methods are not so significant and one can say that these two methods are equally effective, as 
indicated by the fact that coefficients R = 0.96 and R2 = 0.92 are identical for both methods. 
Considerable errors (over 100%) occur in the estimates of the failure rate for the distribution 
pipes only in 2011, which is undoubtedly due to the fact that this indicator is very much 
different from the values for the other analyzed years (could be treated as outlier). A similar 
situation is observed during forecasting the failure rate for the house connections in 2011. 

Parallel correlations (as the ones described above) between real and forecasted data were 
found at the testing step (the SVM model) and the prognosis step (the ANN model), as shown 
in Figures 1 and 2. In relation to the house connections, good agreement between 
experimental and predicted values is generated by the ANN model, but for some years (eg 
2003, 2006 and 2009) the discrepancies are much larger than the ones observed at the learning 
step. Despite many divergences, the trend in the changes of the forecasted values is similar to 
the trend in the variation of real values. In the years 2006-2008 a similar configuration is 
observed for the SVM model, but most of the λ values are much higher than the real ones. 

 

 
Fig. 1. Prediction results of house connections’ failure rate - testing-SVM/prognosis-ANN 

 
The estimation of the failure rate of the distribution pipes (Fig. 2) by the SVM method 

and the ANN method was characterized by acceptable agreement between the forecasted 
and real values in both cases. The Pearson correlation coefficient for the SVM model and 
the ANN model equalled to respectively 0.96 and 0.86, indicating that the SVM method is 
slightly better for predicting the failure rate of distribution pipes than the ANN method. The 
different situation is observed for house connections. It should also be noted that the results 
of predicting the failure rate of the distribution pipes and the house connections (Table 2, 
Figs. 1 and 2) by means of the SVM-RBF model are very similar for both the learning 
sample and the testing sample. Whereas the results of learning and prognosis by the  
ANN-RBF model show larger discrepancies for both types of pipelines. Even though at the 
learning stage the agreement between the experimental and forecasted values is 
satisfactory, the prognosis stage (using new data) gives a larger (but still acceptable from 
the engineering point of view) error. This is evidence of greater effectiveness of RBF-based 
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training by means of SVMs than ANNs. However, at the present step of the studies it 
cannot be explicitly pointed out which of the algorithm is better and should be widely 
adopted in the modelling of the failure rate of water pipelines. Further research in this area 
is needed, also on operational data from other water utilities, permitting more in-depth 
analyses and broader generalizations. 

 

 
Fig. 2. Prediction results of distribution pipes’ failure rate - testing-SVM/prognosis-ANN 

Conclusions 

Support vector machines and artificial neural networks were used for the prediction of 
the failure rate of the house connections and distribution pipes in one of the Polish city. 
Exploitation data for the time span 2001-2012 were chosen for prediction purposes. The 
problem is quite important for the correct and quick approximation of the reliability level. 
Both methods can be used to establish the failure rate of municipal systems. A relatively 
large database must be available in order to identify the relevant correlations between 
dependent and independent variables.  

The optimal SVM model had gamma coefficient equalled to 0.33 for both the 
distribution pipes and the house connections. The capacity C and the number of SVMs were 
respectively 3 and 4 times greater in relation to the model describing the failure frequency 
of the distribution pipes. The error of the V-fold cross validation amounted to 0.110 and 
0.081 for the model describing the failure rate of respectively the house connections and 
distribution pipes. The length, diameter and year of laying the water pipes in the ground 
were treated as independent variables. The optimal ANN-RBF model contained 27 and 8 
hidden neurons for respectively house connections and distribution pipes. The coefficients 
R and R2 are slightly higher at the step of learning than during prognosis of ANN model.  
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METODA WEKTORÓW NO ŚNYCH I SIECI NEURONOWE  
DO PRZEWIDYWANIA WSKA ŹNIKA AWARYJNO ŚCI  

PRZEWODÓW WODOCI ĄGOWYCH 

Wydział Inżynierii Środowiska, Politechnika Wrocławska 

Abstrakt: Wskaźnik awaryjności przewodów wodociągowych przewidywano za pomocą metody wektorów 
nośnych (SVM) i sztucznych sieci neuronowych (SSN). Oba algorytmy należą do metod regresyjnych, 
nazywanych metodami uczenia maszyn. Dane eksploatacyjne z lat 2001-2012 zostały wykorzystane w celach 
predykcji. Długość, średnica i rok budowy przewodów rozdzielczych i przyłączy były zmiennymi niezależnymi. 
Obliczenia przeprowadzono w programie Statistica 12.0. 

Słowa kluczowe: rurociągi, przewidywanie, radialne funkcje bazowe 


