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Abstract: The failure rate of water pipes was predicted usingport vector machines (SVMs) and artificial
neural networks (ANNSs). Both algorithms are reg@ssnethods of so called machine learning. Openatidata
from the time span 2001-2012 were used for forauggurposes. The length, diameter and year oftoacton

of the distribution pipes and the house connectivee treated as the independent variables. Theuwa@tions
were carried out using the Statistica 12.0 software
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Introduction

Failure frequency is one among other indicatorsenalnto account during the
assessment of the reliability level of water supplstems [1, 2]. Nowadays, typical
analysis of exploitation data related to the numbed kinds of damages should be
concerned together with the mathematical modellitigere are a lot of models which could
be used for failure rate prediction [3-5]. Theyphelks to assess the deterioration level of
water conduits relatively quickly. The regressiomthods, for example support vector
machines (SVMs) and artificial neural networks (AfyNare nowadays very popular in
solving many complex engineering problems [6-8]isithe reason why such algorithms,
based on radial basis functions (RBF), were usethis study to predict the values of
failure rate of distribution pipes and house comioes. The principal aim of this research
was to find out, if an artificial neural networkdasupport vector machine of the RBF type
would predict (with an error acceptable for engiimeg purposes) the failure frequency
indicator of water conduits

Materials and methods

The failure rate/, fail./(km-a)] of the house connections and tteritiution pipes was
predicted using the RBF-SVM and the RBF-ANN methdd®e two approaches were based
on radial basis functions. Exploitation data fog tfears 2001-2012 received from the water
utility were used for forecasting purposes. Intietato SVM modelling, the whole data set
was randomly divided into two equal (50%) subsEle training and the testing sample had
147 data each for the house connections as welktspectively 124 and 125 data for the
distribution pipes. The model was built using th&ning data and then it was tested on
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different sample. In relation to ANNs, the methadpl was a little bit different because of the
peculiarities of such kind of modelling. The adiéil neural network learning process
consisted of several stages: a training stage (6D%e data), followed by a testing stage
(25% of the data) and finally, the validation (2%¥6the data) of the created models. In the
considered case, the whole data set (294 dathddnduse connections and 249 data for the
distribution pipes) was used to learn the ANN. Titaéning, testing and validation samples
were chosen randomly from the whole data set. Tognosis was done on the basis of the
unknown previously data set (created separately®. models were built separately for the
distribution pipes and house connections. The tztions were done in the programme
Statistica 12.0.

The relation between the dependent variables (theéiqied value) and the independent
variable need not to be known because the SVM rdetha kind of nonparametric regression
algorithm. V-fold cross validation was used to fihé optimal model parameters [9]. Tenfold
(V = 10) cross validation was used in the consid@rettlem, whereby it was possible to
select proper values for such parameters (leaongtants) as capacitZ) and epsilon §),
since they are not knowapriori. In relation to artificial neural networks, mogerameters
(eg the number of hidden neurons and the type of @miv functions) are determined during
ANN learning using a suitable training algorithmaiy ANN models, for which the number
of hidden neurons ranged from 1 to 30, were te§thd.model characterized by the smallest
mean-square error and the best fit between thedegaland the predicted ones was selected.
The results presented later in this paper arénferchosen optimal ANN model.

In both the methods the independent variables emgth (., L), diameterD,, Dy) the
year of constructionY, Yp) of the distribution pipes and the house connastio

Results and discussion

The parameters of the built ANN and SVM models ttoe different kinds of water
pipelines are presented in Table 1. The validatiwar was considered for selecting an SVM
model most accurately forecasting the failure rdtbe validation error for the house
connections and distribution pipes equalled toeetgely 0.11 and 0.08. Nevertheless, the
failure rate prediction on the basis of the testsample was not satisfactory from the
predicted/real data fit point of view. Moreovere thumber of SVMs for the distribution pipes
was high and as much as 82% of them were locaxéds, ie with weights equal to + the
capacity value (Table 1), indicating a more congiédd model structure. In the case of any
kind of modelling, it is necessary to answer thegion whether the aim is to obtain a perfect
data fit at any coste at the expense of model architecture complicationather to reveal the
correlations between the dependent and indeperdgables.

In the case of the ANN models, Pearson’s corralatioefficient R), a determination
coefficient &) and a relative mean-square prediction error (amiog to about 20% for the
distribution pipes and the house connections) wbeldompared. The value of this error is
rather high in comparison to other results obtainsihg multilayer perceptron instead of
radial basis functions. According to the literat{t®8] RBF ANNs were also less useful for
hourly water demand prediction than the multilagerceptron. Despite the fact that there
were three times more hidden neurons in the houseections model than in the distribution
pipes model (Table 1), the prediction results arers& and characterized by larger
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discrepancies between the experimental and foestakstta (Figs. 1 and 2). Because of the
nature of RBF ANNSs, the activation functions and thaining method were pre-imposed,
which also can have a bearing on modelling qualitgomparison witheg artificial neural
networks using the multilayer perceptron, wherasitpossible to use several different
functions, such as the sigmoidal function, the egotial function and so on [11].

Table 1
Parameters of SVM and ANN models
Type of conduit/parameter | Distribution pipes | Houseconnections
SVM model
Gamma 0.333 0.333
Capacity (C) 3 1
Epsilon €) 0.2 0.5
Number of support vectors (localized) 56 (46) MW (7
Cross-validation error 0.081 0.110
ANN model
Number of hidden neurons 8 27
Activation functions: hidden/output layer Gausdiarar Gaussian/linear
Training algorithm RBFT RBFT
Correlation coefficient (learning/prognosis step) .956/0.859 0.997/0.897
Determination coefficient (learning/prognosis step) 0.914/0.737 0.994/0.805

The results of failure rate prediction for the f@ag sample are presented in Table 2
while the ones for the testing sample (the SVM moded the prognosis stage (the ANN
model) are shown in Figures 1 and 2. Such distinctbetween the testing sample for the
SVM model and the prognosis stage for the ANN motdehecessary to draw, since the
testing sample data and the prognosis stage dat uwméknown to the model previously.
Using such approach it is possible to establishythadity of the model and its applicability to
failure rate prediction.

Table 2
Results of failure rate prediction - learning step

Year House connections Distribution pipes

Experimental ANN-RBF | SVM-RBF Experimental ANN-RBF | SVM-RBF
2001 0.94 0.95 1.17 0.34 0.36 0.38
2002 0.84 0.84 1.16 0.34 0.36 0.38
2003 1.59 1.58 1.26 0.50 0.47 0.48
2004 1.07 1.07 1.32 0.37 0.39 041
2005 1.00 1.00 1.32 0.57 0.48 0.52
2006 1.15 1.15 1.33 0.42 0.42 0.42
2007 0.83 0.80 1.12 0.31 0.30 0.33
2008 0.65 0.63 0.79 0.22 0.21 0.22
2009 0.61 0.62 0.70 0.25 0.25 0.24
2010 0.50 0.50 0.63 0.27 0.26 0.24
2011 0.23 0.33 0.57 0.10 0.21 0.20
2012 0.38 0.38 0.51 0.24 0.25 0.24

An analysis of Table 2 clearly shows that predictiof failure rateA of house
connections using the RBF-ANN model is better tf@nthe RBF-SVM model. For the
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distribution pipes the differences in failure rgieedictions between the two modelling
methods are not so significant and one can sayhbsaé two methods are equally effective, as
indicated by the fact that coefficierfis= 0.96 and?* = 0.92 are identical for both methods.
Considerable errors (over 100%) occur in the estimaf the failure rate for the distribution
pipes only in 2011, which is undoubtedly due to thet that this indicator is very much
different from the values for the other analyzedrggcould be treated as outlier). A similar
situation is observed during forecasting the failate for the house connections in 2011.
Parallel correlations (as the ones described alimt®jeen real and forecasted data were
found at the testing step (the SVM model) and tiogiposis step (the ANN model), as shown
in Figures 1 and 2. In relation to the house cotmes, good agreement between
experimental and predicted values is generatech®ANN model, but for some yearg(
2003, 2006 and 2009) the discrepancies are mugérltran the ones observed at the learning
step. Despite many divergences, the trend in thagds of the forecasted values is similar to
the trend in the variation of real values. In thleang 2006-2008 a similar configuration is
observed for the SVM model, but most of thealues are much higher than the real ones.
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Fig. 1. Prediction results of house connectiondlifa rate - testing-SVM/prognosis-ANN

The estimation of the failure rate of the distribatpipes (Fig. 2) by the SVM method
and the ANN method was characterized by acceptaipieement between the forecasted
and real values in both cases. The Pearson caoreledefficient for the SVM model and
the ANN model equalled to respectively 0.96 and0iBdicating that the SVM method is
slightly better for predicting the failure rateditribution pipes than the ANN method. The
different situation is observed for house connexgtidt should also be noted that the results
of predicting the failure rate of the distributipipes and the house connections (Table 2,
Figs. 1 and 2) by means of the SVM-RBF model ang wémilar for both the learning
sample and the testing sample. Whereas the restilisarning and prognosis by the
ANN-RBF model show larger discrepancies for bothety of pipelines. Even though at the
learning stage the agreement between the experinertd forecasted values is
satisfactory, the prognosis stage (using new d#ites a larger (but still acceptable from
the engineering point of view) error. This is evide of greater effectiveness of RBF-based
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training by means of SVMs than ANNs. However, a firesent step of the studies it
cannot be explicitly pointed out which of the aligfom is better and should be widely
adopted in the modelling of the failure rate of evgtipelines. Further research in this area
is needed, also on operational data from other rwatiéities, permitting more in-depth
analyses and broader generalizations.
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Fig. 2. Prediction results of distribution pipeailfire rate - testing-SVM/prognosis-ANN

Conclusions

Support vector machines and artificial neural neksavere used for the prediction of
the failure rate of the house connections andildigton pipes in one of the Polish city.
Exploitation data for the time span 2001-2012 wehesen for prediction purposes. The
problem is quite important for the correct and guapproximation of the reliability level.
Both methods can be used to establish the failatee of municipal systems. A relatively
large database must be available in order to ifyetiie relevant correlations between
dependent and independent variables.

The optimal SVM model had gamma coefficient equhlte 0.33 for both the
distribution pipes and the house connections. HEpacity C and the number of SVMs were
respectively 3 and 4 times greater in relationht® model describing the failure frequency
of the distribution pipes. The error of the V-faddoss validation amounted to 0.110 and
0.081 for the model describing the failure rateredpectively the house connections and
distribution pipes. The length, diameter and yefalaging the water pipes in the ground
were treated as independent variables. The op#i¥-RBF model contained 27 and 8
hidden neurons for respectively house connectioisdastribution pipes. The coefficients
R and R are slightly higher at the step of learning thariry prognosis of ANN model.
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Abstrakt: Wskaznik awaryjndci przewodéw wodoggowych przewidywano za pompanetody wektorow
nosnych (SVM) i sztucznych sieci neuronowych (SSN).aOhalgorytmy naly do metod regresyjnych,
nazywanych metodami uczenia maszyn. Dane ekspigatae lat 2001-2012 zostaly wykorzystane w celach
predykcji. Dlugaé¢, srednica i rok budowy przewodéw rozdzielczych i pgzgy bylty zmiennymi niezaimymi.
Obliczenia przeprowadzono w programie Statistic@.12

Stowa kluczowe:rurockgi, przewidywanie, radialne funkcje bazowe



