Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
As the polarization direction is unknown in free-space three-dimensional (3D) electromagnetic pulse (EMP) measurement, the components in three directions are usually measured first, and then the total vector is calculated. The waveform (magnitude) and polarization direction define the 3D process. Because of the uncertainty produced in the component measurement, there is also uncertainty in the calculated 3D process. This paper investigates the propagation of uncertainty during the total vector calculation process. The magnitude and polarization angle uncertainty propagation formulas are derived through analysis. The results show that the uncertainty of the calculated magnitude is less than the maximal measurement uncertainty of the three components, and the uncertainty of the polarization angle is less than sqrt(2) times the maximal uncertainty of the three components divided by the magnitude of the measured field. Finally, a Monte-Carlo (MC) simulation is run to validate the results of the analysis. The simulation results agree well with the analysis results.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
213--229
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., wzory
Twórcy
autor
- National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an, 710024, China
autor
- National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an, 710024, China
autor
- National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an, 710024, China
autor
- National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an, 710024, China
autor
- National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an, 710024, China
Bibliografia
- [1] Shi, L., Guo, Y., Guo, J. D. & Gao, C. (2009, September). Design of magnetic field sensor for three dimensional LEMP measurement. The Fifth Asia-Pacific Conference on Environmental Electromagnetics (pp. 93-96). IEEE. https://doi.org/10.1109/CEEM.2009.5304318
- [2] Suo, C., Wei, R., Zhang, W. & Li, Y. (2021). Research on the Three-Dimensional Power Frequency Electric Field Measurement System. Journal of Sensors, 2021, 1-15. https://doi.org/10.1155/2021/8859022
- [3] Kanda, M. & Ries, F. X. (1984). A Broad-Band Isotropic Real-Time Electric-Field Sensor (BIRES) Using Resistively Loaded Dipoles. IEEE Transactions on Electromagnetic Compatibility, EMC-23(3), 122-132. https://doi.org/10.1109/TEMC.1981.303931
- [4] Ling, B., Wang, Y., Peng, C., Li, B., Chu, Z., Li, B. & Xia, S. (2017). Single-chip 3D electric field microsensor. Frontiers of Mechanical Engineering, 12(4), 581-590. https://doi.org/10.1007/s11465-017-0454-x
- [5] Li, W., Chen, F., & Zhang, J. (2013) An integrated optical 3D electric field sensing system based on time-division multiplexing. Optoelectronics Letters, 9(4). https://doi.org/10.1007/s11801-013-3043-1
- [6] Zhang, J., Chen, F., Sun, B., Chen, K. & Li, C. (2014). 3d integrated optical e-field sensor for lightning electromagnetic impulse measurement. IEEE Photonics Technology Letters, 26(23), 2353-2356. https://doi.org/10.1109/LPT.2014.2355209
- [7] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data - Guide to the expression of uncertainty in measurement (JCGM 100:2008). http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
- [8] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data - Supplement 1 to the “Guide to the expression of uncertainty in measurement” - Propagation of distributions using a Monte Carlo method (JCGM 101:2008). https://www.bipm.org/documents/20126/2071204/JCGM_101_2008_E.pdf
- [9] Coral, R., Flesch, C. A., Penz, C. A., Roisenberg, M. & Pacheco, A. L. (2016). A Monte Carlo-based method for assessing the measurement uncertainty in the training and use of artificial neural networks. Metrology and Measurement Systems, 23(2), 281-294. https://doi.org/10.1515/mms-2016-0015
- [10] Näykki, T., Virtanen, A., Kaukonen, L., Magnusson, B., Väisänen, T. & Leito, I. (2015). Application of the Nordtest method for “real-time” uncertainty estimation of on-line field measurement. Environmental Monitoring and Assessment, 187(10). https://doi.org/10.1007/s10661-015-4856-0
- [11] Mariscotti, A. (2007). Measurement procedures and uncertainty evaluation for electromagnetic radiated emissions from large-power electrical machinery. IEEE Transactions on Instrumentation & Measurement, 56(6), 2452-2463. https://doi.org/10.1109/TIM.2007.908351
- [12] Meyer, V. R. (2007). Measurement uncertainty. Journal of Chromatography A, 1158(1-2), 15-24. https://doi.org/10.1016/j.chroma.2007.02.082
- [13] Harťanský, R., Smieško, V. & Maršálka, L. (2013). Numerical analysis of isotropy electromagnetic sensor measurement error. Measurement Science Review, 13(6), 311-314. https://doi.org/10.2478/msr-2013-0046
- [14] Jakubowski, J. (2020). A study on the calibration of an HPM meter based on a D-dot sensor and logarithmic RF power detector. Metrology and Measurement Systems, 27(4), 673-685. https://doi.org/10.24425/mms.2020.134846
- [15] Kong, X., & Xie, Y. Z. (November 2015). Measurement uncertainty analysis of the electro-optical E-field measurement system. 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM) (pp. 296-298). IEEE. 296-298. https://doi.org/10.1109/CEEM.2015.7368689
- [16] Kanda, M. (1994). Standard antennas for electromagnetic interference measurements and methods to calibrate them. IEEE Transactions on Electromagnetic Compatibility, 36(4), 261-273. https://doi.org/10.1109/15.328855
- [17] Liu, X., Wu Y., Qin Y., Meng, D.-L. & Huang, P. (2021). The Loop Antenna Calibration System Using the TEM Method and the Uncertainty Estimation for the Measurement Results. Jiliang Xuebao/Acta Metrologica Sinica, 42(8) 1061-1067. https://doi.org/10.3969/j.issn.1000-1158.2021.08.13 (in Chinese)
- [18] Shi, Y., Nie, X., Zhu, Z., Wang, W. & Wang, J. (2019). Study of the fitting method in the sensitivity calibration of a hemp measuring system. IEEE Transactions on Electromagnetic Compatibility, 62(4), 1-7. https://doi.org/10.1109/TEMC.2019.2929117
- [19] Majerek, D., Widomski, M., Garbacz, M. & Suchorab, Z. (July 2018). Estimation of the measurement uncertainty of humidity using a TDR probe. In AIP Conference Proceedings (Vol. 1988, No. 1). AIP Publishing. https://doi.org/10.1063/1.5047621
- [20] Peng, H., & Jiang, X., (2009). Evaluation and management procedure of measurement uncertainty in new generation geometrical product specification (GPS). Measurement, 42(5), 653-660. https://doi.org/10.1016/j.measurement.2008.10.009
- [21] Yapeng, F., Zheng, S., Yueqi, H., Yun, Z., & Zheng, K. (2021, December). Research on a New Flat Plate Lightning Three-dimensional Electric Field Sensor. In 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE) (pp. 1-3). IEEE. https://doi.org/10.1109/ISAPE54070.2021.9752858
- [22] Bing, L. I., Chunrong, P., Biyun, L., Fengjie, Z., Bo, C. & Shanhong, X. (2017). The decoupling calibration method based on genetic algorithm of three-dimensional electric field sensor. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 39(9), 2252-2258. https://doi.org/10.11999/JEIT161277 (in Chinese)
- [23] Solaguren-Beascoa Fernández, M., Alegre Calderon, J. M. & Bravo Díez, P. M. (2009). Implementation in MATLAB of the adaptive Monte Carlo method for the evaluation of measurement uncertainties. Accreditation and Quality Assurance, 14(2), 95-106. https://doi.org/10.1007/s00769-008-0475-6
Identyfikator YADDA
bwmeta1.element.baztech-fe4257c1-b0cd-4eb3-8425-463d9f537f02