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OF FRACTIONAL-ORDER ACCELEROMETERS  

Abstract 
The paper shows possibilities of using fractional calculus in dynamic measurements. It describes  

a laboratory measurement system for investigating dynamic properties of measuring transducers. 
Transducer’s dynamics are identified by the ARX method. Properties of the examined transducers  
of integral and fractional orders are compared. The authors indicate the fractional calculus 
advantages from the point of view of their dynamics description. 

INTRODUCTION 
The recent dynamic development of research into application of the fractional calculus to 

analysis of dynamic systems [1], [5] has encouraged the authors to attempt its application to 
analysis and modelling of measuring transducers, described by means of the ‘classic’ 
mathematical analysis so far . 

Transducers measuring accelerations (accelerometers) are tested, treated as a representative 
group of measuring transducers. In the classic notation, accelerometers are described with 
second-order differential equations, like many other groups of measuring transducers, such as: 
RLC, mechanical vibrating systems, displacement measurement sensors, systems including 
tensometric and piezoelectric transducers. In addition, linear transducers of higher than 
second orders, when in transitional states, behave in ways similar to second-order linear 
transducers.  

The aim of this paper is to show how models of accelerometers based on the fractional 
calculus notation convey their dynamic behaviour in comparison to models represented by 
differential equations of integer orders and in comparison to processing characteristics of their 
real counterparts. 

1. MATHEMATICAL MODEL OF MEASURING TRANSDUCER 
(ACCELEROMETERS) 
A measuring transducer comprising three types of elements characteristic for linear 

systems, i.e.: elements storing kinetic energy, elements storing potential energy and elements 
causing energy losses, are referred to as second-order measuring transducers. 
Simulation and laboratory testing of a second-order transducer measuring accelerations 
(accelerometer) has been tested in this paper, treated as a representative group of measuring 
transducers (Fig. 1.).  
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Fig. 1. Kinetic diagram of an accelerometer: m– seismic mass, sk  –  spring constant, tB  –  damping 

coefficient, x  –  distance relative to a fixed system of coordinates,y  –  distance of a vibrating 
mass relative to a fixed system of coordinates, w  –  distance of a vibrating mass relative to a 
vibrating object 

Source: [2] 

A differential equation describing the absolute motion of a second-order measuring 
transducer’s (accelerometer’s) seismic mass can be expressed as: 
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Considering the motion of the vibrating mass relative to the vibrating object (Fig. 1): 
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Depending on selection of Sk , m  and tB , a transducer can serve to measure displacements 

as a vibrometer  assuming low Sk  and tB and high m  (Fig. 3), or acceleration as an 

accelerometer assuming a high Sk , low m  and tB  (Fig. 2). This corresponds to two cases: 

where the frequency of the object’s vibrations is much lower than circular frequency of free 
vibrations: 0ωω <<m  – accelerometer (Fig. 2), or where the frequency of the object’s 

vibrations is much greater than the circular frequency of free vibrations: 0ωω >>m  – 

vibrometer (Fig. 3). 
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Fig. 2. Characteristic of  the equation of measuring transducer’s seismic mass motion for 0ωω <<m : 

mω  – measured frequencies, 0ω  – circular frequency of free vibrations, y  – real mass 

displacements,   xɺɺ  – displacement of the housing 
Source: [6] 

 
Fig. 3. Characteristic of  the equation of measuring transducer’s seismic mass motion for: 0ωω >>m : 

mω  – measured frequencies, 0ω  – circular frequency of free vibrations, y  – real mass 

displacements, x  – displacement of the housing 
Source: [6] 

In practical vibration measurements, acceleration-measuring transducers, the so-called 
accelerometers, are employed.  
For purposes of simulation testing, a measuring transducer was assumed of a frequency 

Hzf 350= , that is, circular frequency of free vibrations 
s

rad
22000 =ω  and degree of 

damping 2.0=ζ . Dynamics of such a transducer, characterised by means of a 2nd-order 
differential equation (1), are described by operator transmittance: 
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Fig. 4 shows step response of a transducer with an operator transmittance (4). The 
amplitude value for the step response stabilizes after 01.0 s in the simulations. Fig. 5 
illustrates logarithm, amplitude and phase frequency characteristics of a measuring transducer 
with operator transmittance (4).  

Simulation testing of the measuring transducer (4) was conducted in an operation band 
without amplitude distortions. The band is part of the amplitude characteristic’s  linear range 
from 10Hz to above 210 Hz. Fig. 7 shows the transducer’s response to a sinusoid input of 
100Hz.  
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Fig. 4. Step response of measuring transducer (4) 
Source: [6] 

 
Fig. 5. Amplitude and phase diagrams of  measuring transducer (4) 
Source: [6] 

2. FRACTIONAL FORMULATION OF THE MEASURING 
TRANSDUCER MODEL  

The equation (1), describing the measuring transducer, can be expressed as a difference 
equation: 
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or: 
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Equation (5) can have the following derivative-integral expression: 
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where )(n
k∆  is the discrete function’s reverse difference, defined as: 
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for: ....,2,1=n . 
When (8) is taken into account, (6) has the form: 
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where: 012001122 ,2, aaaAaaAaA ++=−−==  and: 000112102 ,2, bBbbBbbbB =−−=++= . 

Using the above method has received three models describing the measuring transducer: 
- classic model (transfer function of measuring transducer model) described with operator 
transmittance (10): 
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Operation of a transducer described with  the equation was simulated for appropriately 
selected parameters: natural angular frequency and degree of damping. Dynamics of the 
measuring transducer described by operator transmittance (4) were adopted as follows: 
- classic discrete model (discrete transfer function of measuring transducer model), derived 
from the operator transmittance model (10), described by means of discrete transmittance 
(11):  
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- Response of a continuous object to a discrete input depends not only on values of this signal 
at a discrete moments of time but also on sampling time and the extrapolator used.  
MATLAB&Simulink programming environment provides a number of criteria which can be 
employed to define a discrete equivalent of the continuous object. ZOH (Zero-Order-Hold) is 
the default and most commonly used extrapolator. This corresponds to extrapolation with a 
zero-order polynomial (staircase function). Thus, the classic discrete model (11) was obtained 
by discretising the classic model (10), the Zero-Order-Hold model with a sampling time: 

710−=pT s, for which Nyquist theorem of sampling frequency selection holds true. 

- discrete model (discrete transfer function of fractional transducer model) is expressed with 
derivative integrals and described by discrete transmittance: 
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The discrete transmittance (12) is produced by implementation of the method of determining 
expression from (5) to (9) of the measuring transducer in MATLAB&Simulink. Reverse 
differences of the discrete function )()( kfn

k∆ were determined according to (8), which 

produced: 
0,02,1 012001122 =++==−−=== aaaAaaAaA                                 (13)                        

where:                   14
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Models’ responses were tested in the programming environment MATLAB&Simulink. 
Responses of all measuring transducer models to the input sinusoid 100Hz signal are 
illustrated in Fig. 7. Model signals are not phase shifted in relation to the input signal and 
have a different amplitude. It can be noted that the model described by means of the discrete 
transmittance (12) correctly reproduces values of the input signal amplitude, like the model of 
transmittance (11). It can be noted in Bode frequency diagrams (Fig. 9) that the measuring 
transducer model determined by the derivative-integral method presents the dynamics of the 
classically determined model (the diagrams of the models coincide).  
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Fig. 6. Simulation diagram of the system comparing measuring transducer models: Transfer function 

of measuring transducer model – transducer model of operator transmittance (10), Discrete 
transfer function of measuring transducer model – discrete transducer model of transmittance 
(11), Discrete transfer function of fractional transducer model – fractional discrete model (12) 

Source: [3] 

Measuring transducer models (11) and (12) have only been subject to simulation testing 
and do not fully represent real models. The simulations indicate that the  fractional model (12) 
exhibits the same dynamics as the classic model.  

 
Fig. 7. Comparison of responses by measuring transducer models (11) and (12) to sinusoid functions 

(diagrams of the models overlap) 
Source: [6] 

‘The ‘apparent’ time of stabilization of time diagrams – the time after which a model’s 
description is independent from time – for the fractional model is the same as for the classic 
model. 
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Fig. 8. Comparison of responses by measuring transducer models (11) and (12) to step functions 

(diagrams of the models overlap) 
Source: [6] 

 
 

Fig. 9. Comparison of Bode diagrams of measuring transducer models (11) and (12) (diagrams of the 
models overlap) 

Source: [6] 

3. MODEL OF A LABORATORY SYSTEM OF ACCELERATION 
MEASURING TRANSDUCER 

Simulation and laboratory testing was undertaken of the accelerometer measurement 
system. The system was constructed at the Measuring Transducers Laboratory, Department of 
Measurement Automatics and Engineering, Faculty of Transport and  Electrical Engineering 
of Kazimierz Pulaski University of Technology and Humanities in Radom. An overview of 
the measurement system is shown in Fig. 10. 

In order to determine measuring transducer’s operator transmittance, a system comprising 
two accelerometers (6), (7), conditioner (1) and µDAQ USB-26A16 measurement card (3) 
was modelled. Accelerometer (7) DeltaTron by Bruel&Kjaer type 4507, sensitivity 
10.18mV/ms-2 and the range of frequency measurements from 0.4Hz to 6kHz was tested. The 
conditioner’s operating range was between 1Hz and 20kHz. The transducer was mounted on 
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an electrodynamic inductor (5). A model accelerometer (6) by VEB Metra, type KB12, 
sensitivity 317mV/ms-2 was aligned with the tested transducer. 

 
Fig. 10. Laboratory measurement system for testing of mechanical vibration transducers:  

1 – conditioner, 2 – generator, 3 – amplifier, 4 – measurement card µDAQ USB-26A16,  
5 – inductor, 6, 7 – model and tested measuring transducers, 8 – oscilloscope 9 – computer 

Source: [2], [3], [4], [6] 

The operator transmittance (15) describing dynamics of the measurement system was 
determined by identification with an external ARX (AutoRegressive with EXternal input): 
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The voltage signal from the end of the tested measurement track is the identified signal, 
signal from the model accelerometer in response to the generator’s sinusoid function (2) of 
100Hz is the comparative signal.  ARX identification method produced the operator 
transmittance )(sG  describing the system’s dynamics (classic model): 
- Discrete transfer function of the model was determined on the basis of the operator 
transmittance (15):           
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The classic discrete model (16) was produced by discretising the classic model (14) by 
means of the ‘Zero-Order-Hold’ method with the sampling time 410−=pT s, for which Nyquist 

theorem of sampling frequency selection obtains. 
- Discrete transfer function of fractional models was determined with a method implemented 
in MATLAB&Simulink. For varying increment of h , quasi-fractional transducer models 
become discrete transmittances: 
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The model of the real measurement system in the form of discrete transmittance and 
models expressed by means of a differential-integral equation were then compared. Both 
types of the models were based on the classic model derived by ARX identification method. 
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Fig. 11. Bode frequency diagrams of measuring transducer models of transmittance (15) – (17e) 
Source: [6] 

The simulations were carried out by ode3 integration method for a 100Hz sinusoid input 
signal.  Fig. 11 shows logarithm frequency amplitude and phase diagrams of the measurement 
system models. It can be observed that, for the adopted increment of h , measure of 
differentiation accuracy, the diagrams clearly diverge. This means that other h increments, far 
lower than the sampling frequency, must be adopted. 

4. EQUATION OF NON-INTEGRAL ORDER TRANSDUCER 
DYNAMICS 

The Riemann-Liouville’s or the Grünwald-Letnikov’s definition can be stated for non-
integral order derivatives. Let the fractional derivative be: 
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is defined as the reverse difference of the discrete function and h  is the increment of )(tf  
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Introducing a non-integral order to the measuring transducer’s equation (1) we obtain:                     
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Generalising (22) and considering that integral-order derivatives in the derivative-integral 
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calculus are a special case of non-integral order derivatives, one can formulate: 
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where: u , v  – non-integral order derivatives. 
Let (23) be a linear differential equation of non-integral orders:  
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Taking (24) into account, (23) can be expressed as: 
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Introducing factors iii vvv aaa 012 ,,  and jjj uuu bbb 012 ,,  to (25), with: 1)(
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Considering: 
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and: 
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produces the following matrix equation: 
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and: 
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Equation (25) finally becomes: 
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Method of reducing the differential equation (23) to the matrix equation (32) was verified 
by determining logarithm frequency diagrams of elementary terms (Fig. 12.) and of 
transducers for the adopted non-integral orders in (23) (Fig. 13) and obtaining the desired 
diagram courses (overlapping of the diagrams). The diagrams can be observed to clearly 
overlap for all the adopted h  increments. This means that h  increments far lower than the 
sampling frequency should be assumed.            

  

Fig. 12.  Frequency Bode diagrams of the integral and non-integral order oscillatory term:  
cz_oscyl_d – integral-order oscillatory term 

Source: [6] 
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Fig. 13. Logarithm frequency Bode diagrams of the transducer model for v1=1.8 and successive v2 

orders, from 1.4 to 2.8  
Source: [6] 

The results of the work proposed within the framework of this paper are to answer the 
questions related to legitimacy of modelling dynamic properties of accelerometers by means 
of fractional order differential equations, and in particular to answer the basic question: “Is 
abandoning the classical modelling of dynamic properties by means of integer order 
differential equations in favour of fractional order ones justified from the point of view of 
accuracy of dynamic behaviour modelling?” Due to scarcity of literature on the topic of using 
fractional order differential equations for modelling accelerometers (and generally measuring 
sensors), the paper proposed is a pioneering one. 

The results obtained, though mainly concerning the research into modelling of the 
accelerometer dynamic behaviour, will be relevant for modelling dynamic properties of a very 
wide group of sensors and measuring transducers due to the typical notation of dynamic 
behaviour in a form of differential equations. As this way of modelling is commonly 
accepted, not only for modelling objects but also phenomena, it is assumed that the research 
results obtained within the framework of this project will be significant for the discussions 
about a general and common application of fractional calculus for modelling physical 
phenomena. 

CONCLUSIONS 
The comparison of classic and fractional models responses to the step function implies the 

time after which diagrams stabilise for fractional models is the same as for the classic model. 
The same applies to frequency diagrams for fractional discrete models, which have the same 
course in the tested frequency ranges as the classic models. This means that non-integral order 
differential-integral calculus is a generalisation of integral-order differential calculus – this is 
confirmed by laboratory testing of dynamic systems. 

In order to verify the method of developing a transducer equation for non-integral orders, 
forms of elementary term diagrams determined by means of this method were tested – the 
oscillatory term was selected, which has the same differential expression as the accelerometer. 
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Effect of h  increment variations on fractional measuring transducer’s amplitude and 
phase diagrams has also been shown in this paper. 

Application of the alternative, generalised method of describing dynamic properties of 
measuring transducers discussed in this article, based on non-integral order differential-
integral calculus, will help to undertake analyses of simulated dynamics of various objects 
and processes which, due to their complexity, must be described by means of differential 
equations of any orders. This method appears to enhance accuracy of simulations compared to 
current methods not only for elements like the measuring transducer covered in this article but 
also for systems comprising a number of devices or complex physical phenomena. 
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BADANIA LABORATORYJNE WŁA ŚCIWOŚCI 
DYNAMICZNYCH AKCELEROMETRÓW 

NIECAŁKOWITYCH RZ ĘDÓW  

Streszczenie 
W artykule przedstawiono moŜliwości zastosowania rachunku róŜniczkowo-całkowego 

niecałkowitych rzędów w miernictwie dynamicznym. Przedstawiono układ pomiarowy do badań 
właściwości dynamicznych akcelerometrów W procesie identyfikacji przetwornika pomiarowego 
zastosowano metodę ARX. Porównano właściwości dynamiczne przetwornika pomiarowego 
całkowitego i niecałkowitego rzędu. Wskazano na zalety zastosowania rachunku róŜniczkowo-
całkowego niecałkowitych rzędów do opisu dynamiki przetworników pomiarowych. 
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