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Abstract
The paper shows possibilities of using fractioretalus in dynamic measurements. It describes
a laboratory measurement system for investigatiggachic properties of measuring transducers.
Transducer’'s dynamics are identified by the ARXhoekt Properties of the examined transducers
of integral and fractional orders are compared. Thethors indicate the fractional calculus
advantages from the point of view of their dynardescription.

INTRODUCTION

The recent dynamic development of research intdicgtion of the fractional calculus to
analysis of dynamic systems [1], [5] has encouragedauthors to attempt its application to
analysis and modelling of measuring transducerscrded by means of the ‘classic’
mathematical analysis so far .

Transducers measuring accelerations (acceleromarersested, treated as a representative
group of measuring transducers. In the classictiootaaccelerometers are described with
second-order differential equations, like many otireups of measuring transducers, such as:
RLC, mechanical vibrating systems, displacementsoement sensors, systems including
tensometric and piezoelectric transducers. In smfditlinear transducers of higher than
second orders, when in transitional states, belawsays similar to second-order linear
transducers.

The aim of this paper is to show how models of Eroeneters based on the fractional
calculus notation convey their dynamic behavioucamparison to models represented by
differential equations of integer orders and in panson to processing characteristics of their
real counterparts.

1. MATHEMATICAL MODEL OF MEASURING TRANSDUCER
(ACCELEROMETERS)

A measuring transducer comprising three types efmehts characteristic for linear
systems, i.e.: elements storing kinetic energynelds storing potential energy and elements
causing energy losses, are referred to as secaled-measuring transducers.

Simulation and laboratory testing of a second-orttansducer measuring accelerations
(accelerometer) has been tested in this papetetres a representative group of measuring
transducers (Fig. 1.).
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Fig. 1.Kinetic diagram of an accelerometén— seismic massk, — spring constant3, — damping
coefficient, X — distance relative to a fixed system of coorisgy — distance of a vibrating
mass relative to a fixed system of coordinates;- distance of a vibrating mass relative to a
vibrating object

Source: [2]

A differential equation describing the absolute imot of a second-order measuring

transducer’s (accelerometer’s) seismic mass caxpessed as:
2

d 2 N 2 d
gz YO + 200, - Y1) + @ Y(1) = wpX(t) + 2000, - X(1) 1)

where: w, = \/Kr; - circular frequency of free vibrationg, = B . degree of damping

2,k,m

andk = ki - amplification factor.

Considering the motion of the vibrating mass retato the vibrating object (Fig. 1):
w(t) = y(t) - x(t) (2)
d—zw(t) +2{w iw(t) +afw(t) = _a° X(t)
dt? dt ’ dt? (3)
Depending on selection &, m and B, , a transducer can serve to measure displacements
as a vibrometer assuming lowg and B ,and high m (Fig. 3), or acceleration as an
accelerometer assuming a high, low m and B, (Fig. 2). This corresponds to two cases:
where the frequency of the object’s vibrations iscinlower than circular frequency of free
vibrations: w, <<, — accelerometer (Fig.2), or where the frequentythe object’s
vibrations is much greater than the circular freopye of free vibrations:w, >>w, —

vibrometer (Fig. 3).
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Fig. 2. Characteristic of the equation of measuring tlansr’s seismic mass motion oy, << w):
w,, — measured frequencies), — circular frequency of free vibrationy, — real mass
displacements, X — displacement of the housing

Source: [6]
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Fig. 3. Characteristic of the equation of measuring tlansr’s seismic mass motion fag, >> w, :

w,, —measured frequencies), — circular frequency of free vibrationy, — real mass

displacementsx — displacement of the housing
Source: [6]

In practical vibration measurements, accelerati@asaring transducers, the so-called
accelerometers, are employed.
For purposes of simulation testing, a measuringsttacer was assumed of a frequency

f =350Hz, that is, circular frequency of free vibrations, :2200% and degree of

damping ¢ = 0.2 Dynamics of such a transducer, characterised bgnsh of a 2nd-order

differential equation (1), are described by operamsmittance:
1
&= s® +880s+ 484M10° )

Fig. 4 shows step response of a transducer witho@erator transmittance (4). The
amplitude value for the step response stabilizésr ab01s in the simulations. Fig.5
illustrates logarithm, amplitude and phase freqyest@aracteristics of a measuring transducer
with operator transmittance (4).

Simulation testing of the measuring transducerwd$ conducted in an operation band
without amplitude distortions. The band is partlod amplitude characteristic’s linear range
from 10Hz to abovel0* Hz. Fig. 7 shows the transducer’s response tmusaid input of
100Hz.
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Fig. 4. Step response of measuring transducer (4)
Source: [6]
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Fig. 5. Amplitude and phase diagrams of measuring trasesd4)
Source: [6]

2. FRACTIONAL FORMULATION OF THE MEASURING
TRANSDUCER MODEL

The equation (1), describing the measuring trarsguman be expressed as a difference
equation:

W, + W, +a,W,, =b,X, +bX ., +agX, (5)
or:
Wk Xk
. a a]|wa|=[b. b b]lx.|. (6)
Wk—2 Xk—2
Equation (5) can have the following derivative-gra expression:
AZAK(Z)WK + AiAk—l(l) + A\)Wk—Z = BZAK(Z)WK + BlAk(l) Xk—l + BOWk—Z (7)

where A" is the discrete function’s reverse differencejraef as:
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AVE(k) =Y al (k- ) ) (

forrn=212 .....
When (8) is taken into account, (6) has the form:
APw, AP x,
[az —a, ~2a, a2+a1+ao] A(I?Wk :[bo _b1_2bo b2+b1+bo] A(I?Xk (9)
AP w, AP x,

where: A, =a,,A =-a, —2a,,A,=a, +a, +a, and: B, =b, +b, +b,,B, =-b, - 2b,,B, =b,.
Using the above method has received three modstsidmg the measuring transducer:
- classic model (transfer function of measuringh$ducer model) described with operator
transmittance (10):
1

s® +88(s +4.841(°
Operation of a transducer described with the eguatvas simulated for appropriately

selected parameters: natural angular frequencydmggee of damping. Dynamics of the
measuring transducer described by operator tratsrmé (4) were adopted as follows:

- classic discrete model (discrete transfer fumctsd measuring transducer model), derived
from the operator transmittance model (10), desdriby means of discrete transmittance
(12):

G(s) = (10)

166700 z* +6.666[10°z+1.667(10™

2% =22 +0.99¢ '
- Response of a continuous object to a discretatidppends not only on values of this signal
at a discrete moments of time but also on sampiing and the extrapolator used.
MATLAB&SiImulink programming environment providesraimber of criteria which can be
employed to define a discrete equivalent of theinaous object. ZOH (Zero-Order-Hold) is
the default and most commonly used extrapolatois €arresponds to extrapolation with a
zero-order polynomial (staircase function). Thihg, tlassic discrete model (11) was obtained
by discretising the classic model (10), the ZerdéHold model with a sampling time:
T, =107s, for which Nyquist theorem of sampling frequesejection holds true.

- discrete model (discrete transfer function otfi@nal transducer model) is expressed with

derivative integrals and described by discretesiratiance:
ZZ
G = . 12
@ =067 206 +1007 (12)

The discrete transmittance (12) is produced by emgintation of the method of determining
expression from (5) to (9) of the measuring traesdun MATLAB&SIimulink. Reverse

differences of the discrete functioA” f (k) were determined according to (8), which
produced:

G(2) = (11)

A=a,=1LA=-a-28,=0A=a,+a+3,=0 (13)

where: B, =b, +b +b, =10",B, =—b, —2b, =-2[10",B, =h, =10". (14)

Models’ responses were tested in the programmingraamment MATLAB&SIimulink.
Responses of all measuring transducer models toiribgt sinusoid 100Hz signal are
illustrated in Fig. 7. Model signals are not phabéted in relation to the input signal and
have a different amplitude. It can be noted thatrtiodel described by means of the discrete
transmittance (12) correctly reproduces valuesiefinput signal amplitude, like the model of
transmittance (11). It can be noted in Bode fregyatiagrams (Fig. 9) that the measuring
transducer model determined by the derivative-nategnethod presents the dynamics of the
classically determined model (the diagrams of tlogl@hs coincide).
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Fig. 6. Simulation diagram of the system comparing meaguransducer models: Transfer function
of measuring transducer model — transducer modapefator transmittance (10), Discrete
transfer function of measuring transducer moddkerdte transducer model of transmittance
(11), Discrete transfer function of fractional tsdncer model — fractional discrete model (12)

Source: [3]

Measuring transducer models (11) and (12) have babn subject to simulation testing
and do not fully represent real models. The sinmatindicate that the fractional model (12)
exhibits the same dynamics as the classic model.

5
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Time offset: 0

Fig. 7. Comparison of responses by measuring transducgels@l1) and (12) to sinusoid functions
(diagrams of the models overlap)
Source: [6]

‘The ‘apparent’ time of stabilization of time diagns — the time after which a model’s
description is independent from time — for the fi@wal model is the same as for the classic
model.
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Fig. 8. Comparison of responses by measuring transduceelm@tl) and (12) to step functions
(diagrams of the models overlap)
Source: [6]
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Fig. 9. Comparison of Bode diagrams of measuring transduoelels (11) and (12) (diagrams of the
models overlap)
Source: [6]

3. MODEL OF A LABORATORY SYSTEM OF ACCELERATION
MEASURING TRANSDUCER

Simulation and laboratory testing was undertakenth&f accelerometer measurement
system. The system was constructed at the Meastrargducers Laboratory, Department of
Measurement Automatics and Engineering, Facultyrahsport and Electrical Engineering
of Kazimierz Pulaski University of Technology andirHanities in Radom. An overview of
the measurement system is shown in Fig. 10.

In order to determine measuring transducer’s opeteansmittance, a system comprising
two accelerometers (6), (7), conditioner (1) ai@AQ USB-26A16 measurement card (3)
was modelled. Accelerometer (7) DeltaTron by Brugi&er type 4507, sensitivity
10.18mV/m#& and the range of frequency measurements from Otdi8kHz was tested. The
conditioner’s operating range was between 1Hz @kH2. The transducer was mounted on
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an electrodynamic inductor (5). A model accelerand6) by VEB Metra, type KB12,
sensitivity 317mV/méwas aligned with the tested transducer.

Fig. 10.Laboratory measurement system for testing of m&chhvibration transducers:

1 — conditioner, 2 — generator, 3 — amplifier, lheasurement cagDAQ USB-26A16,

5 —inductor, 6, 7 — model and tested measuringsthacers, 8 — oscilloscope 9 — computer
Source: [2], [3], [4], [6]

The operator transmittance (15) describing dynanoicshe measurement system was
determined by identification with an external ARXufoRegressive with EXternal input):
0.0321%* +13196s+1.33810°

s? +4.67€[10*s+2.30¢[10"

The voltage signal from the end of the tested mreasent track is the identified signal,
signal from the model accelerometer in responsiidogenerator’'s sinusoid function (2) of
100Hz is the comparative signal. ARX identificationethod produced the operator
transmittanceG(s) describing the system’s dynamics (classic model):

- Discrete transfer function of the model was deieed on the basis of the operator
transmittance (15):

G(s) = (15)

0.0321%° - 0.0536& + 0,02163 (16)
2? +1.6252+0.626¢
The classic discrete model (16) was produced bgrelising the classic model (14) by
means of the ‘Zero-Order-Hold" method with the séngptime T =10"s, for which Nyquist

theorem of sampling frequency selection obtains.

- Discrete transfer function of fractional modelasadetermined with a method implemented
in MATLAB&Simulink. For varying increment ofh, quasi-fractional transducer models
become discrete transmittances:

G(s) =

2 _ _
G, (2= 3.22& : 6.4432+3.215’ h=10" (I7a
! 10C5z° -20C5z2 +10C
2 —_ -
Gf (Z) - 3.347z . 656&4'3215’ h =10 6 (17b)
z 104.7z° —204.7z2 +10C
2 _ _
G, (2) = 4.54822 7752+ 3.215’ h=10° (17¢)
¢ 104.72° —24€.82 +10C
2 _ _,
¢ 58.09z° -66.782 +1C
2 _
Gf5 (Z) — 269z 1.384z+0.032 h — 10—3 (17e)

70872 -48782+1

The model of the real measurement system in the fof discrete transmittance and
models expressed by means of a differential-integgaation were then compared. Both
types of the models were based on the classic numilisled by ARX identification method.

430 TTS



Phase (deg)

Frequency (radisj

Fig. 11.Bode frequency diagrams of measuring transduceletamf transmittance (15) — (17¢e)
Source: [6]

The simulations were carried out by ode3 integratitethod for a 100Hz sinusoid input
signal. Fig. 11 shows logarithm frequency ampktaahd phase diagrams of the measurement
system models. It can be observed that, for theptadoincrement ofh, measure of
differentiation accuracy, the diagrams clearly dixe This means that oth&éincrements, far
lower than the sampling frequency, must be adopted.

4. EQUATION OF NON-INTEGRAL ORDER TRANSDUCER
DYNAMICS

The Riemann-Liouville’s or the Griinwalcetnikov's definition can be stated for non-
integral order derivatives. Let the fractional dgative be:

Y =i 1 S v .

£, DM f (t) = t{;’&’iﬁ?“( e hl)} (18)

or:
f(t)
tth(v) f (t) = h|lr0n |:r;|;iai(v) f (t _ hl):| f (t - h)
f (t —kh) 19)
1 20

A=y VDV i) g

where: : .

is defined as the reverse difference of the discfetction andh is the increment off (t)
defined in the rangft,,t :]
t—t,

k| (21)
Introducing a non-integral order to the measurmagdducer’s equation (1) we obtain:

2

d d o d?
Ww(t) +2(w, qe W (t) + jw(t) = ‘W X(t)

h=

(22)
Generalising (22) and considering that integralkeorderivatives in the derivative-integral
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calculus are a special case of non-integral ordavalives, one can formulate:

d(Vz) d(vl) d(Vo) d(uz) d(ul) d(Uo)
Ay WO+ Ay W+ A W) = By X(O + By X0+ By x(D). (23)
where:u, v — non-integral order derivatives.
Let (23) be a linear differential equation of norteigral orders:
n ) i )
D tA D, wW(t) =>'t,B, D, x(t) (24)
i=0 j=0

where:
A =constlR, i=12..,n-1B; =constlR,

j=22...,mm<sn mnOR A =1

t,A D;V')w(t), t,B; D(uj)x(t) — Riemann-Liouville’s or Grinwaltletnikov’'s derivatives,

t,AD"" w(t) tBD "x(®)  —initial conditions,
to t=t

_to

w(t), x(t) — functions for which Riemann-Liouville’s or GruaWd-Letnikov's derivatives
exist.

Taking (24) into account, (23) can be expressed as:

DY wi(t) D" x(t)
[A, A A]| D™ w) | =[B, B, B)]| DM x(t) |- (25)
D) wi(t) D x(t)

Introducing factorsa), a’,ay and b,’,b", by’ to (25), with: al" = 1 for i=12...
b =1for j=12... mandaO-A‘ Aay 4B bo—'A“q Ay v D

! hY ’ RUn huml hUo'
Considering:
0 0
DY w(t) h*: al? aM al? | T'w(2h) 26
D[( Vi) W(t ) = 0 h]\:l 0 a(()vl ) aj(.vl ) aévl ) W( h) ( )
Dt(VO) W(t) 0 0 1 a(()Vo) aj(.VO) a§“°) W(Oh)
L h* |
and:
% 0 o0
O I L b b b | [x(2h)
D xty | =| 0 o0 b b b | | xh) (27)
D x(t) o o A b b bl | | x(0h)
L h™ |
produces the following matrix equation:
ivz 0 (v2) (v2) (v2)
L a? a” & | [wh) w(2h) (28)
(A A Ao o] &Y ar @] wh) | =[a a &) wh)
o o 1 & a" & | | w(oh) w(0h)
h'
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and:

. ) ) b{) bl bl | [x(2h) x(2h)
[BZ e e h%} b b b || x(h) | =[b, by b x(h) (29)
bl bl i) | | x(Oh) x(0h)
where:
a(()Vz ) ai(Vz ) aéVz )
1 1 1 y y y
{Azhvl AL thvo} a a" al | =[a, a a (30)
(Vo) (Vo) (Vo)
Q" 7 ay |
and:

L L L béuz) bl(uz) béuz) ]
o Sl I P &
béuo) bl(uo) béuo) |

Equation (25) finally becomes:

w(2h) x(2h)
[a, & ]| w(h) |=[b, b b x(h) |. (32)
w(Oh) x(Oh)

Method of reducing the differential equation (28)the matrix equation (32) was verified
by determining logarithm frequency diagrams of edatary terms (Fig.12.) and of
transducers for the adopted non-integral order&8) (Fig. 13) and obtaining the desired
diagram courses (overlapping of the diagrams). diagrams can be observed to clearly
overlap for all the adoptett increments. This means thhat increments far lower than the
sampling frequency should be assumed.

Bade Diagram
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Fig. 12. Frequency Bode diagrams of the integral and ntegral order oscillatory term:
cz_oscyl_d — integral-order oscillatory term
Source: [6]
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Bode Diagram
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Fig. 13.Logarithm frequency Bode diagrams of the transdoeedel for y=1.8 and successive v
orders, from 1.4 to 2.8
Source: [6]

The results of the work proposed within the framewof this paper are to answer the
guestions related to legitimacy of modelling dynaiproperties of accelerometers by means
of fractional order differential equations, andparticular to answer the basic questitis:
abandoning the classical modelling of dynamic props by means of integer order
differential equations in favour of fractional omdenes justified from the point of view of
accuracy of dynamic behaviour modellingDte to scarcity of literature on the topic of @gsin
fractional order differential equations for modegjiaccelerometers (and generally measuring
sensors), the paper proposed is a pioneering one.

The results obtained, though mainly concerning tbgearch into modelling of the
accelerometer dynamic behaviour, will be relevantiodelling dynamic properties of a very
wide group of sensors and measuring transducerstaldlee typical notation of dynamic
behaviour in a form of differential equations. Asist way of modelling is commonly
accepted, not only for modelling objects but alkenpmena, it is assumed that the research
results obtained within the framework of this pobjvill be significant for the discussions
about a general and common application of fractiawsculus for modelling physical
phenomena.

CONCLUSIONS

The comparison of classic and fractional modelparses to the step function implies the
time after which diagrams stabilise for fractionabdels is the same as for the classic model.
The same applies to frequency diagrams for fraatidiscrete models, which have the same
course in the tested frequency ranges as the clasgiels. This means that non-integral order
differential-integral calculus is a generalisatmfnintegral-order differential calculus — this is
confirmed by laboratory testing of dynamic systems.

In order to verify the method of developing a tiduer equation for non-integral orders,
forms of elementary term diagrams determined bynsed this method were tested — the
oscillatory term was selected, which has the saifferehtial expression as the accelerometer.
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Effect of h increment variations on fractional measuring tdalcer's amplitude and
phase diagrams has also been shown in this paper.

Application of the alternative, generalised metladddescribing dynamic properties of
measuring transducers discussed in this articlsedan non-integral order differential-
integral calculus, will help to undertake analysésimulated dynamics of various objects
and processes which, due to their complexity, nimesdescribed by means of differential
equations of any orders. This method appears tar@ehaccuracy of simulations compared to
current methods not only for elements like the mgag transducer covered in this article but
also for systems comprising a number of deviceaorplex physical phenomena.
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BADANIA LABORATORYJNE WELA Scwvo SCI
DYNAMICZNYCH AKCELEROMETROW
NIECALKOWITYCH RZ EDOW

Streszczenie
W artykule przedstawiono dlivosci zastosowania rachunku diczkowo-catkowego
niecatkowitych regdow w miernictwie dynamicznym. Przedstawiono ukbadhiarowy do bada
whasciwasci dynamicznych akcelerometrow W procesie idemtgjikprzetwornika pomiarowego
zastosowano meted ARX. Poréwnano wigiwasci dynamiczne przetwornika pomiarowego
catkowitego i niecalkowitego ¢du. Wskazano na zalety zastosowania rachunkiniazkowo-
catkowego niecatkowitych¢ddw do opisu dynamiki przetwornikéw pomiarowych.

Autorzy:

Prof. dr hab. in. Mirostaw LUFT — Uniwersytet Technologiczno-Humanistyczny
im. Kazimierza Putaskiego w Radomiu, Wydziat Tramsp i Elektrotechniki,
ul. Malczewskiego 29, 26-600 Radom, m.luft@uthrbd.p

Dr hab. ik. Elzbieta SZYCHTA, prof. UTH Rad. — Uniwersytet Technologiczno-
Humanistyczny im. Kazimierza Putaskiego w RadomiWydziat Transportu
I Elektrotechniki, ul. Malczewskiego 29, 26-600 Rad e.szychta@uthrad.pl

Dr inz. Daniel PIETRUSZCZAK - Uniwersytet Technologiczno-Humanistyczny im.
Kazimierza Putaskiego w Radomiu, Wydziat Transportu Elektrotechniki,
ul. Malczewskiego 29, 26-600 Radom, d.pietruszczatk@d.pl

436 TTS



