PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crystal growth of nanostructured zinc oxide nanorods from the seed layer

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One-dimensional (1D) zinc oxide (ZnO) nanostructures (nanorods) were synthesized on a glass slide and fluorine-doped tin oxide (SnO2/F or FTO) coated glass (FTO/glass) by a wet chemical method. The structural, morphological and optical analyses of the as-deposited ZnO nanostructures were performed by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and UV-Vis spectroscopy, respectively. The XRD results showed that the nanostructures as-deposited on the glass and the FTO/glass substrates were of ZnO wurtzite crystal structure, and the crystallite sizes estimated from the (0 0 2) planes were 60.832 nm and 64.876 nm, respectively. The SEM images showed the growth of densely oriented ZnO nanorods with a hexagonal-faceted morphology. The UV-Vis absorption spectrum revealed high absorbance properties in the ultraviolet range and low absorbance properties in the visible range. The optical energy band gap of the ZnO nanostructure was estimated to be 3.87 eV by the absorption spectrum fitting (ASF) method.
Wydawca
Rocznik
Strony
477--482
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • University of Ilorin, Ilorin, Kwara State, Nigeria
autor
  • University of Ilorin, Ilorin, Kwara State, Nigeria
autor
  • University of Ilorin, Ilorin, Kwara State, Nigeria
  • Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
autor
  • Institute of Materials for Electronics and Magnetism, Parma, Italy
autor
  • Institute of Materials for Electronics and Magnetism, Parma, Italy
autor
  • Institute of Materials for Electronics and Magnetism, Parma, Italy
autor
  • Institute of Materials for Electronics and Magnetism, Parma, Italy
autor
  • Institute of Materials for Electronics and Magnetism, Parma, Italy
Bibliografia
  • [1] SANYAL M.K., DATTA A., HAZRA S., Pure Appl. Chem., 74 (2002), 1553.
  • [2] RAO C.N.R., CHEETHAM A.K., J. Mater. Chem., 11 (2001), 2887.
  • [3] CAO G., Nanostructures and Nanomaterials – Synthesis, Properties, and Applications, Imperial College Press, London, 2004.
  • [4] LIAO L., DUAN X.F., More Recent Advances in One-Dimensional Metal Oxide Nanostructures: Optical and Optoelectronics Application, in: Zhai T., Yao J. (Eds.), One-Dimensional Nanostructures: Principles and Application, 1st ed., JohnWiley & Sons, Inc., 2013, p. 359.
  • [5] THOMAS D.G., J. Phys. Chem. Solids, 15 (1960), 1.
  • [6] WANG Z.L., Mater. Today, 6 (2004), 26.
  • [7] MORKOÇ H., ÖZGÜR U., Zinc Oxide: Fundamentals, Materials and Device Technology, WILEY-VCH, Weinheim, 2009.
  • [8] CHOU T.P., ZHANG Q., FRYXELL G.E, CAO G.Z., Adv. Mater., 19 (2007), 2588.
  • [9] WAN Q., LI Q.H., CHEN Y.J., WANG T.H., HE X.L., LI J.P., Appl. Phys. Lett., 84 (2004), 3654.
  • [10] HOSSAIN M.K., GHOSH S.C., BOONTONGKONG Y., THANACHAYANONT C., DUTTA J., JMNM, 23 (2005), 27.
  • [11] PARK W. I., KIM J.S., YI G.-C., BAE M.H., LEE H.J., Appl. Phys. Lett., 85 (2004), 5052.
  • [12] ZHANG X.M., LU M.Y., ZHANG Y., CHEN L.J., WANG Z.L., Adv. Mater., 21 (2009), 2767.
  • [13] HUANG M.H., MAO S., FEICK H., YAN H., WU Y., KIND H., Weber E., Russo R., Yang P., Science, 292 (2001), 1897.
  • [14] YI G.-C., WANG C., PARK W.I., Semicond. Sci. Tech., 20 (2005), S22.
  • [15] ZHOU J., XU N., WANG Z.L., Adv. Mater., 18 (2006), 2432.
  • [16] ALI S.M.U, NUR O., WILLANDER M., DANIELSSON B., IEEE T. Nanotechnol., 8 (2009), 678.
  • [17] LEE W., JEONG M.C., MYOUNG J.M., Acta Mater., 52 (2004), 3949.
  • [18] DAI Z.R., PAN Z.W., WANG Z.L., Adv. Funct. Mater., 13 (2003), 9.
  • [19] HEO Y.W., VARADARAJAN V., KAUFMAN M., KIM K., NORTON D.P., REN F., FLEMING P.H., Appl. Phys. Lett., 81 (2002), 3046.
  • [20] CHIOU W., WU W., TING J., 12 (2003), 1841.
  • [21] SUH D.-I., BYEON C.C., LEE C.-L., Appl. Surf. Sci., 257 (2010), 1454.
  • [22] VAYSSIERES L., Adv. Mater., 15 (2003), 464.
  • [23] YU L.G., ZHANG G.M., LI S.Q., XI Z.H., GUO D.Z., J. Cryst. Growth, 299 (2007), 184.
  • [24] GREENE L.E., YUHAS B.D., LAW M., ZITOUN D., YANG P., Inorg. Chem., 19 (2006), 7535.
  • [25] WANG M., HAHN S.H., KIM J.S., HONG S.H., KOO K.-K., KIM E.J., Mater. Lett., 62 (2008), 4532.
  • [26] KIM K.H., UTASHIRO K., ABE Y., KAWAMURA M., Materials, 4 (2014), 2522.
  • [27] ZHENG Z., LIM Z.S., PENG Y., YOU L., CHEN L., WANG J., Sci. Rep.-UK, 3 (2013), 2434.
  • [28] FOO K.L., HASHIM U., MUHAMMAD K., VOON C.H., Nanoscale Res. Lett., 9 (2014), 429.
  • [29] KAHRAMAN S., BAYANSAL F., ÇETINKARA H.A., ÇAKMAK H.M., GÜDER H.S., Mater. Chem. Phys., 134 (2012), 1036.
  • [30] SONG J., LIM S., J. Phys. Chem. C, 111 (2007), 596.
  • [31] Powder Diffraction File 36-1451 for Hexagonal Zinc Oxide, JCPDS-International Center for Diffraction Data, 1997.
  • [32] TAN S.T., CHEN B.J., SUN X.W., FAN W.J., J. Appl. Phys., 98 (2005), 013505.
  • [33] GHOBADI N., Nano Lett., 3 (2013), 2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe30ab6e-c266-4cee-996e-c19f1c30247e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.