PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Mechanical Properties of Biaxial and Triaxial Fabric and Composites Reinforced by Them

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Własności mechaniczne kompozytów wzmocnionych tkaniną wieloosiową
Języki publikacji
EN
Abstrakty
EN
In this article, the mechanical properties of biaxial and triaxial woven aramid fabric and respective reinforced composites were investigated. Both fabrics had the same mass/m2. The first part of the experimental investigation was focused on the mechanical properties of different non-laminated aramid fabrics (biaxial and triaxial). The second part was concerned with the mechanical properties of composites made of a different combination of layers of fabric reinforced with an epoxy resin matrix in the order of biaxial+biaxial, trixial+triaxial and biaxial+triaxial. The composites were tested for tensile strength, flexural strength, strain and Young’s and flexural modulus. It can be seen from the results that the density and direction of the yarns are the most important parameters for determination of the strength of the fabric reinforced composite. The biaxial composite clearly showed better tensile strength, while the bi-tri axial order showed good flexural strength compared to the other composite combinations. These fabric reinforced composites have suitable applications in the areas of medical, protection and in the automotive industries.
PL
W artykule przedstawiono wyniki badań właściwości mechanicznych tkaniny aramidowej dwuosiowej i trójosiowej oraz kompozytów duroplastycznych wzmocnionych tymi tkaninami. Obie tkaniny posiadały tę samą masę powierzchniową. Pierwsza część badań eksperymentalnych skupiona była na analizie właściwości mechanicznych obu tkanin aramidowych. Druga część dotyczyła analizy właściwości mechanicznych kompozytów wzmocnionych tkaninami w różnej konfiguracji: dwuosiowa + dwuosiowa, trójosiowa + trójosiowa,dwuosiowa + trójosiowa. Zbadano wytrzymałości na rozciąganie oraz zginanie, odkształcenie i moduł Younga trzech kompozytów w kierunku wzdłużnym, poprzecznym oraz pod kątem 45°. Na podstawie wyników stwierdzono, że liczność oraz kierunek przędzy są najważniejszymi parametrami określającymi wytrzymałość kompozytu wzmocnionego tkaniną. Kompozyt wzmocniony dwiema warstwami tkaniny dwuosiowej wykazywał wyraźnie lepszą wytrzymałość na rozciąganie. Kompozyt wzmocniony tkaniną trójosiową i dwuosiową wykazał się największą sztywnością zginania. Tego typu wyroby kompozytowe mogą mieć szerokie zastosowanie w obszarach przemysłu medycznego, ochronnego i motoryzacyjnego.
Rocznik
Strony
37--44
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, 116 Zeromskiego Street, Lodz 90-924, Poland
  • Lodz University of Technology Department of Strength of Materials, Lodz, Poland
  • Technical University of Liberec, Department of Engineering Technology and Materials, Liberec, Czech Republic
Bibliografia
  • 1. Rasin N, Kueh BHA, Mahat NHM and Mohd YA. Stability of triaxially woven fabric composites employing geometrically nonlinear plate model with volume segmentation ABD constitution. Journal of Composite Materials 2015; 50, 19: 2719-2735.
  • 2. Sugun BS, Rao RMGK. Mechanical behaviour of woven and multiaxial fabric composites, Journal of Reinforced Plastics and Composites 2000; 19: 743-753.
  • 3. Ghazimoradi M, Carvelli V, Marches MC, Frassine R. Mechanical characterization of tetraxial textiles. Journal of Industrial Textiles 2017; 28 July.
  • 4. Bilisik K. Multiaxis three-dimensional weaving for composites: A review. Textile Research Journal 2012; 82, 7: 725-743.
  • 5. Unal PG. 3D Woven Fabrics, In tech open science.
  • 6. Boris D, Xavier L, Damien S. The tensile behaviour of biaxial and triaxial braided fabrics. Journal of Industrial Textiles 2016, June 16.
  • 7. Aiman DPC, Yahya MF, Salleh J. Impact properties of 2D and 3D woven composites: A review. American Institute of Physics, AIP Conference proceeding.
  • 8. Zhu B, Yu TX, Tao XM. Large deformation and slippage mechanism of the plain woven composite in bias extension. Composites Part A: Applied Science and Manufacturing 2007; 38, 8: 1821-1828.
  • 9. Samal S, Thanh NP, Petríková I, Marvalová B, Lomov SV. Correlation of microstructure and mechanical properties of various fabric reinforced geo-polymer composites after exposure to elevated temperature. Ceramics International 2015, 41, 9, Part B, November, Pages 12115- 12129.
  • 10. Cao J, Akkerman R, Boisse P, Chen J , Cheng HS , Graaf EFD, Gorczyca JL, Harrison P, G. Hivet, J. Launay, W. Lee, L. Liud, Lomov SV, Longe AE, Morestinc F, Padvoiskis J, Peng XQ, Sherwood J., Stoilova Tz, Tao XM, Verpoest I, Willems A, Wiggers J, Zhu TX, Zhu B. Characterization of mechanical behaviour of woven fabrics: Experimental methods and benchmark results. Composites: Part A, 2008; 39, 6: Pages 1037-1053.
  • 11. Czekalski B, Snycerski M. Specific Properties of Woven Multiaxial Structures. FIBRES & TEXTILES in Eastern Europe 2014; 22, 4(106): 43-50.
  • 12. Snycerski M, Frontczak-Wasiak I, Balcerzak M. Influence of the Construction of a FourAxial Fabric on Its Properties. FIBRES & TEXTILES in Eastern Europe 2011, 19, 5(88): 40- 45.
  • 13. Kashani MH, Rashidi A, Crawford BJ, Milani AS. Analysis of a two-way tension-shear coupling in woven fabrics under combined loading tests: Global to the local transformation of non-orthogonal normalized forces and displacements. Composites Part A: Applied Science and Manufacturing 2016; 88, Supplement C: 272-285.
  • 14. Frontczak-Wasiak I, Snycerski M. Assessment of Transversal Deformations of MultiAxial Woven Fabrics Stretched One-Directionally. FIBRES & TEXTILES in Eastern Europe 2006; 14, 2(56): 29-33.
  • 15. Al-Gaadi B, Halász M. Deformation Analysis of Composite Reinforcing Fabrics through Yarn Pull-out, Drape and Own Developed Shear Tests. Fibres and Polymers 2013; 14, 5: 804- 814.
  • 16. Mourid A. Mechanical behaviour of a triaxially braided textile composite at high temperature. Presented at Ecole Polytechnique de Montreal, October 2014.
  • 17. Islam A. 3D woven structure, an overview of manufacturing technologies. Woven Textiles 2012; 264-313.
  • 18. Banerjee PK, Mishra S, Ramkumar T. Effect of Sett and Construction on Uniaxial Tensile Properties of Woven Fabrics. Journal of Engineered Fibers and Fabrics 2010;5, 2:1-21.
  • 19. Behera BK, Dash BP. An experimental investigation into structure and properties of 3D woven fabric. The Journal of The Textile Institute 2013; 104, 12: 1337-1344.
  • 20. Vanleeuw B, Carvelli V, BarburskI M, Lomov SV, Vuure AWV. Quasi Unidirectional flax composite reinforcement: Deformability and complex shape forming. Composite Science and Technology 2015; 110: 76-86.
  • 21. Harrison P, Clifford M. Rheological behaviour of pre-impregnated textile composites. In: Design and manufacturing of textile composites. Woodhead: 2005.
  • 22. Lebrun G, Bureau MN, Denault J. Evaluation of bias- extension and picture-frame test methods for the measurement of interplay shear properties of PP/glass commingled fabrics. Composite Structure 2003; 61, 4: 341-352.
  • 23. Lee W, Padvoiskis J, Cao J, Luycker ED, Boisse P, Morestin F, Chen J, Sherwood J. Biasextension of woven composite fabrics. International Journal of Material Forming 2008; 1, Supplement 1: 895-898.
  • 24. Bilisik K, Mohamed MH. Multiaxis Three-dimensional Flat Woven Preform (Tube Rapier Weaving) and Circular Woven Preform (Radial Crossing Weaving). Textile Research Journals 2009; 79 12: 1067-1084.
  • 25. Samal S, Thanh NP, Petrikova I, Marvalova B. Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature. Jom 2015; 67, 7: 1478- 1485.
  • 26. Curiskis JI, Duriez A, Herszberg I. Development in multiaxial weaving for advanced composite materials proceedings. ICCM-11, Vol V-Textile Composites, and Characterization (Australian Composite Structure Society, Melbourne), 1997, V86-V96.
  • 27. Bilisik K, Karaduman NS, Bilisik NE. Application 3D Fabrics for Technical Textile. Intech open science. Chapter 4, March 24, 2016.
  • 28. El-Messiry EM, Youssef S. Analysis of stress-strain of architect woven fabric strength under biaxial extensions. Alexandria Engineering Journal 2011; 50, 4: 297-303.
  • 29. Arif A, Pandey KN, Abhishek. Life estimation of natural fibre (BANANA) reinforced composite under cyclic loading. Proceedings of international conference on advances in mechanical engineering. Conference Paper, May 2013.
  • 30. Barburski M, Masajtis J. Modelling of the change of structure of woven fabric under mechanical loading. FIBRES AND TEXTILES Easter Europe 2009; 17, 1(72): 39-45.
  • 31. Vacuum Bagging Techniques. A guide to the principles and practical application of vacuum bagging for laminating composite materials WEST SYSTEM. 7th-edition, April 2010.
  • 32. Barburski M, Straumit I, Zhang X, Wevers M, Lomov SV. Micro-CT analysis of the internal structure of sheared textile composite reinforcement. Composites: Part A 73 (March 2015) 45–54, http://dx.doi.org/10.1016/j.compositesa.2015.03.008.
  • 33. Vanleeuw B, Carvelli V, Lomov SV, Barburski M, Vuure AW. Deformability of a flax reinforcement for composite materials. Key Engineering Materials 2014; 611-612: 257-264; Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/KEM.611-612.257.
  • 34. Milašius V, Milašius R, Kumpikaite E, Olšauskiene A. Influence of Fabric Structure on Some Technological and End-use Properties. FIBRES & TEXTILES in Eastern Europe 2003;. 11, 2(41): 48-51.
  • 35. Kumpikaitė E. Analysis of Dependencies of Woven Fabric’s Breaking Force and Elongation at Break on its Structure Parameters. FIBRES & TEXTILES in Eastern Europe 2007; 15, 1(60): 35-38.
  • 36. Gilewicz P, Dominiak J, Cichocka A, Frydrych I. Change in Structural and Thermal Properties of Textile Fabric Packages Containing Basalt Fibres after Fatigue Bending Loading. FIBRES & TEXTILES in Eastern Europe 2013; 21, 5(101): 80-84.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe2dc63c-9a6e-4208-b33a-73f8e02b0072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.