PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of circular bimetallic tube confined concrete slender columns under eccentric compression

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to investigate the performance of thin-walled circular stainless steel-carbon steel bimetallic tube confined concrete slender columns under eccentric compression. 14 slender columns including bimetallic tube confined concrete (BTCC) with and without rebar, and concrete-filled bimetallic tube (CFBT) were tested. A parametric analysis is conducted based on the validated finite-element model. The results show that the two steel tube layers worked well together and the thin-walled BTCC specimens behaved in a ductile manner. Under the same parameters, the decrease of the diameter–thickness ratio of bimetallic tube improves the bearing capacity and rigidity of the BTCC slender column, but reduces its ductility in the descending stage. The confinement effect of bimetallic tube on the concrete in BTCC columns is stronger than that in CFBT columns. When the yield strength of stainless steel and carbon steel is similar, the stainless steel–total steel ratio has little effect on the capacity of the column. Provided meeting the requirements of corrosion resistance, relatively thinner stainless steel tube is preferred to reduce the cost. The comparison between the simulation and the calculation results shows that the current design method can predict the bearing capacity of the BTCC slender column with large diameter–thickness ratio.
Rocznik
Strony
13--39
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China
  • Postdoctoral Station of Civil Engineering, Chongqing University, Chongqing 400000,China
  • School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
autor
  • School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
Bibliografia
  • [1] Sezen H, Miller EA. Experimental evaluation of axial behavior of strengthened circular reinforced-concrete columns. J Bridg Eng. 2011;16:238–47.
  • [2] Peter M, Bonacci JF, Lachemi M, Composite Response of High-Strength Concrete Confined by Circular Steel Tube. ACI Structural Journal, 2004, 101(4).
  • [3] Abramski M. Load-carrying capacity of axially loaded concrete-filled steel tubular columns made of thin tubes. Arch Civil Mech Eng. 2018;18:902–14.
  • [4] Stephens MT, Lehman DE, Roeder CW. Seismic performance modeling of concrete-filled steel tube briges: tools and case study. Eng Struct. 2018;165:88–105.
  • [5] Talebi E, Korzen M, Hothan S. The performance of concrete filled steel tube columns under post earthquake fires. J Constr Steel Res. 2018;150:115–28.
  • [6] Wang XD, Liu JP, Zhang SM. Behavior of short circular tubed-reinforced-concrete columns subjected to eccentric compression. Eng Struct. 2015;105:77–86.
  • [7] Binici B. An analytical model for stress–strain behavior of confined concrete. Eng Struct. 2005;27:1040–51.
  • [8] Han LH, Yao GH, Chen ZB, et al. Experimental behaviours of steel tube confined concrete (STCC) columns. Steel Compos Struct. 2005;5(6):459–84.
  • [9] Liu JP, Teng Y, Zhang YS, et al. Axial stress-strain behavior of high-strength concrete confined by circular thin-walled steel tubes. Constr Build Mater. 2018;177:366–77.
  • [10] Hoang AL, Fehling E. Numerical study of circular steel tube confined concrete (STCC) stub columns. J Constr Steel Res. 2017;136:238–55.
  • [11] Nematzadeh M, Fazli S, Naghipour M, et al. Experimental study on modulus of elasticity of steel tube-confined concrete stub columns with active and passive confinement. Eng Struct. 2017;130:142–53.
  • [12] Karagah H, Shi C, Dawood M, Belarbi A. Experimental investigation of short steel columns with localized corrosion. Thin-Walled Struct. 2015;87:191–9.
  • [13] Han LH, Hou C, Wang QL. Square concrete filled steel tubular members under loading and chloride corrosion: experiments. J Constr Steel Res. 2012;71:11–25.
  • [14] Saad-Eldeen S, Garbatov Y, Soares CG. Effect of corrosion severity on the ultimate strength of a steel box girder. Eng Struct. 2013;49:560–71.
  • [15] Yuan F, Chen MC, Huang H, Xie L. Circular concrete filled steel tubular columns under cyclic load and acid rain attack: test simulation. Thin-Walled Struct. 2018;122:90–101.
  • [16] Young B, Ellobody E. Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns. J Constr Steel Res. 2006;62(5):484–92.
  • [17] Patel VI, Liang QQ, Hadi M. Nonlinear analysis of axially loaded circular concrete-filled stainless steel tubular short columns. J Constr Steel Res. 2014;101:9–18.
  • [18] Ye Y, Deng JC, Peng YL, et al. Experimental study on circular stainless steel tube confined concrete stub columns under axial compression. J Huaqiao Univ. 2019;40(4):476–82 (in Chinese).
  • [19] Uy B, Tao Z, Han LH. Behaviour of short and slender concrete-filled stainless steel tubular columns. J Constr Steel Res. 2011;67(3):360–78.
  • [20] Guo LH, Liu Y, Fu F, et al. Behavior of axially loaded circular stainless steel tube confined concrete stub columns. Thin-Walled Struct. 2019;139:66–76.
  • [21] Lam D, Gardener L. Structural design of stainless steel concrete filled columns. J Constr Steel Res. 2008;64(11):1275–82.
  • [22] Hassanein MF, Elchalakani M, Patel VI. Overall buckling behavior of circular concrete-filled dual steel tubular columns with stainless steel external tubes. Thin-walled Struct. 2017;115:336–48.
  • [23] Gunawardena Y, Aslani F. Concrete-filled spiral-welded stainless-steel tube long columns under concentric and eccentric axial compression loading. J Constr Steel Res. 2019;161:201–26.
  • [24] Ye Y, Han LH, Sheehan T, et al. Concrete-filled bimetallic tubes under axial compression: experimental investigation. Thin-Walled Struct. 2016;108:321–32.
  • [25] Ye Y, Han LH, Guo ZX. Concrete-filled bimetallic tubes (CFBT) under axial compression: analytical behaviour. Thin-Walled Struct. 2017;119:839–50.
  • [26] Ye Y, Zhang SJ, Han LH, et al. Square concrete-filled stainless steel/carbon steel bimetallic tubular stub columns under axial compression. J Constr Steel Res. 2018;146:49–62.
  • [27] Gao WC, Axial behavior of stainless steel tube confined concrete short columns with circular cross-section. Harbin Institute of Technology, 2016.
  • [28] Wang YY, Research on basic behavior of high-strength concrete-filled steel tubular short columns under axial compressive loading. Harbin Institute of Technology, 2003.
  • [29] Quaeh WM, Tengand JG, Chung KF. Three-stage full-range stress-strain model for stainless steels. J Struct Eng ASCE. 2008;134(9):1518–27.
  • [30] Wang YY, Zhang SM. Analysis and simplified calculation of mechanical behavior of concrete-filled steel short columns under axial compression based on three parameters. J Harbin Inst Technol. 2007;39(2):210–5.
  • [31] JGJT 471–2019. Technical standard for steel tube confined concrete structures. Ministry of Construction of the People’s Republic of China, 2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe291c86-c055-4b70-bee7-20d5d785fdc3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.