Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Due to its irritating, allergenic, toxic, pathogenic, and carcinogenic effects, suspended particulate matter (PM) seriously threatens human health. Therefore, it seems obvious to control the level of concentration of PM2.5 and PM10 particles and their reduction in the indoor environment such as homes, workplaces, or public utilities. In the following work, an attempt was made to determine the efficiency of a home air purifier based on the concentration of PM2.5 and PM10 particles at selected measurement points in a teaching room located in the building of the Bialystok University of Technology. The tests were carried out in March and in April 2021, using the DT-96 meter, which measured the concentration of PM2.5 and PM10 in the air. The study included the time and intensity of air purifier operation. In addition, reference was made to the concentration of PM2.5 and PM10 in outdoor air, which was measured at measuring stations in the city of Bialystok. The obtained test results made it possible to assess the initial state of air quality in the test room, as well as to determine the parameters affecting the best efficiency of the air purifier and to notice the dependencies in changes in the concentration of PM2.5 and PM10 between the indoor and outdoor environment.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
32--39
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Department of Technology in Environmental Engineering, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
autor
- WhiteMoose, ul. Elewatorska 11/1, 15-620 Białystok, Poland
autor
- Department of Chemistry, Biology and Biotechnology, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
- 1. Astel A. 2014. Modeling environmental pollution sources’ impact scale using principal components analysis and multiple linear regression. StatSoft Polska, 27–44. [in Polish]
- 2. Barrett P.M., Resing J.A., Buck N.J., Buck C.S., Landing W.M., Measures C.I. 2012. The trace element composition of suspended particulate matter in the upper 1000 m of the eastern North Atlantic Ocean: A16N. The University of Washington, 142–144, 41–53.
- 3. Borowski, G., Malec, A. 2016. Dust hazards and atmospheric air monitoring. Ecological Engineering, 50, 161–170. DOI: 10.12912/23920629/65489 [in Polish]
- 4. Brunekreef B., Holgate T.S. 2002. Air pollution and health., The Lancet, 360(9341), 1233–1242. DOI: 10.1016/S0140-6736(02)11274-8
- 5. Burkat K. 2022. Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2.5 air pollution, 1990–2019: an analysis of data from the Global Burden of Disease Study 2019. Lance Planet Health, 6, 586–600. DOI: 10.1016/S2542-5196(22)00122-X
- 6. Cao J., Yang C., Li J., Chen R., Chen B., Gu D., Kan H. 2011. Association between long-term exposure to outdoor air pollution and mortality in China: A cohort study, Journal of Hazardus Materials, 28, 186(2–3),1594–600. DOI: 10.1016/j.jhazmat.2010.12.036
- 7. Chen R., Yin H., Cole I.S., Shen S., Zhou X., Wang Y., Tang S. 2020. Exposure, assessment and health hazards of particulate matter in metal additive manufacturing: A review. Chemosphere, 259, 127452. DOI: 10.1016/j.chemosphere.2020.127452
- 8. Dwornik K. 2019. A healthy home. How to easily create a safe space that will positively affect your health, Open Publishing House, Kraków. [in Polish]
- 9. EEA Report 2020. Air quality In Europe – 2020 report. European Environment Agency. https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report. [access: 22.12.2022]
- 10. Alex F.J., Tan G., Kyei S.K., Ansah P.O., Agyeman P.K., Fayzullayevich J.V., Olayode I.O. 2023. Transmission of viruses and other pathogenic microorganisms via road dust: Emissions, characterization, health risks, and mitigation measures. Atmospheric Pollution Research, 4(1), 101642. DOI: 10.1016/j.apr.2022.101642
- 11. Hadi, K.A., Wardoyo, A.Y.P., Juswono, U.P., Naba, A., Budianto, A., Adi, E.T.P. 2022. A Study of Erythrocyte Deformation Level Related to Biomass Burning Emission Exposures Using Artificial Neural Networks. Polish Journal of Environmental Studies, 31(6), 5037-5046. https://doi.org/10.15244/pjoes/150643.
- 12. Hendryx M., Luo J., Chojenta C., Bylesc J.E. 2019. Air pollution exposures from multiple point sources and risk of incident chronic obstructive pulmonary disease (COPD) and asthma, Environmental Research179(Pt A), 108783. DOI: 10.1016/j.envres.2019.108783
- 13. https://powietrze.gios.gov.pl/pjp/current/station_details/archive/609. [access: 12.12.2022]
- 14. https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health Ambient (outdoor) air pollution. 2021 [access:16.11.2022]
- 15. Jaros M. 2011. Changeability of green areas in the structure of the city of Białystok. Bialystok Technical University, 2, 2081–3279. [in Polish]
- 16. Leung D.Y.C. 2015. Outdoor-indoor air pollution in an urban environment: challenges and opportunity. Frontiers in Environmental Science, 2, 69. DOI: 10.3389/fenvs.2014.00069
- 17. Liu Ch., Hsu P-Ch., Hyun-Wook Lee H-W., Ye M., Zheng G., Liu N., Li W., Cu Y. 2015. Transparent air filter for high-efficiency PM2.5 capture. Nature Communications, 6, 6205. DOI: 10.1038/ncomms7205
- 18. Seigneur C. 2019. Air pollution. Concepts, Theory, and Applications. Cambridge University Press, United Kingdom.
- 19. Siudek P., Ruczyńska W. 2021. Simultaneous Measurements of PM2.5- and PM10-bound Benzo(a) pyrene in a Coastal Urban Atmosphere in Poland: Seasonality of Dry Deposition Fluxes and Influence of Atmospheric Transport. Aerosol and Air Quality Research, 21, 210044. https://doi.org/10.4209/aaqr.210044
- 20. Staszowska A. 2020. Application of Biophilic Installations for Indoor Air Quality Improvement. Annual Set The Environment Protection, 22, 716–726.
- 21. Vijayan V.K., Paramesh H., Salvi S.S. 2015. Enhancing indoor air quality -The air filter advantage. Lung India, 32(5), 473–479. DOI: 10.4103/0970-2113.164174
- 22. Violintzis C., Arditsoglou A., Voutsa D. 2009. Elemental composition of suspended particulate matter and sediments in the coastal environment of Thermaikos Bay, Greece: Delineating the impact of inland waters and wastewaters. Journal of Hazardous Materials, 166, 1250–1260. DOI: 10.1016/j.jhazmat.2008.12.046
- 23. Zhang R., Wang G., Guo S., Zamora M.L., Ying Qi, Lin Y., Wang W., Hu M., Wang Y. 2015. Formation of Urban Fine Particulate Matter. Chemical Reviews, 115(10), 3803–3855. DOI: 10.1021/acs.chemrev.5b00067
- 24. Zhou X., Cao Z., Ma Y., Wang L., Wu R., Wang W. 2016. Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: Potential implications for the revised particulate standard, Chemosphere, 144, 518–526. DOI: 10.1016/j.chemosphere.2015.09.003
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe276e6b-865d-4f1d-9d7d-33e2bedb0014