PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of thermal characteristics with multi-physicsc oupling for the feed system of a precision CNC machine tool

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The machining accuracy of CNC machine tools is significantly affected by the thermal deformation of the feed system. The ball screw feed system is extensively used as a transmission component in precise CNC machine tools, responsible for converting rotational motion into linear motion or converting torque into repetitive axial force. This study presents a multi-physical coupling analysis model for the ball screw feed system, considering internal thermal generation, intending to reduce the influence of screw-induced thermal deformation on machining accuracy. This model utilizes the Fourier thermal conduction law and the principle of energy conservation. By performing calculations, the thermal source and thermal transfer coefficient of the ball screw feed system are determined. Moreover, the thermal characteristics of the ball screw feed system are effectively analyzed through the utilization of finite element analysis. To validate the proposed analysis model for the ball screw feed system, a dedicated test platform is designed and constructed specifically to investigate the thermal characteristics of the ball screw feed system in CNC machine tools. By selecting specific CNC machine tools as the subjects of investigation, a comprehensive study is conducted on the thermal characteristics of the ball screw feed system. The analysis entails evaluating parameters like temperature field distribution, thermal deformation, thermal stress, and thermal equilibrium state of the ball screw feed system. By comparing the simulation results from the analysis model with the experimental test results, the study yields the following findings: The maximum absolute error between the simulated and experimental temperatures at each measuring point of the feed system components is 2.4◦C, with a maximum relative error of 8.7%. The maximum absolute error between the simulated and experimental temperatures at the measuring point on the lead screw is 2.0◦C, with a maximum relative error of 6.8%. The thermal characteristics obtained from the steady-state thermal analysis model of the feed system exhibit a prominent level of agreement with the experimental results. The research outcomes presented in this paper provide valuable insights for the development of ball screw feed systems and offer guidance for the thermal design of machine tools.
Rocznik
Strony
art. no. e148941
Opis fizyczny
Bibliogr 29 poz., rys., tab.
Twórcy
  • College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
autor
  • Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China
autor
  • Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China
autor
  • Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China
  • Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China
  • College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
autor
  • School of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, State Key Laboratory of FluidPower and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
  • School of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, State Key Laboratory of FluidPower and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Bibliografia
  • [1] B. Man, Y. Guo, X.-Y. Fan, L. Li, and Ch.-X. Li, “Research status and development trend of thermal error of ball screw feed system for machine tool,” Mach. Tool Hydraulics, vol. 45, no. 15, pp. 174–179, 2021, doi: 10.3969/j.issn.1001-3881.2021.15.035. (in Chinese)
  • [2] M. Macko, I. Rojek, M. Sága, T. Burczyński, and D. Mikołajewski, “Machine modelling and simulations,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136716, 2021, doi: 10.24425/bpasts.2021.136716.
  • [3] T.-J. Li, C.-Y. Zhao, and Y.-M. Zhang, “Adaptive real-time model on thermal error of ball screw feed drive systems of CNC machine tools,” Int. J. Adv. Manuf. Technol., vol. 94, pp. 3853–3861, 2018, doi: 10.1007/s00170-017-1076-5.
  • [4] J. Yang, C. Li, M. Xu, and Y. Zhang, “Analysis of thermal error model of ball screw feed system based on experimental data,” Int. J. Adv. Manuf. Technol., vol. 119, no. 11, pp. 7415–7427, 2022, doi: 10.1007/s00170-022-08752-w.
  • [5] C. Ma, J. Yang, X.S. Mei, L. Zhao, H. Shi, and D.S. Zhang, “Dynamic Thermal-Structure Coupling Analysis and Experimental Study on Ball Screw Feed Drive System of Precision Machine Tools,” Appl. Mech. Mater., vol. 868, pp. 124–135, 2017, doi: 10.4028/www.scientific.net/AMM.868.124.
  • [6] J. Xia, Y. Hu, B. Wu, and T. Shi, “Numerical solution, simulation and testing of the thermal dynamic characteristics of ball-screws,” Front. Mech. Eng. China, vol. 3, no. 1, pp. 28–36, 2008, doi: 10.1007/s11465-008-0007-4.
  • [7] R.J. Liang, W.H. Ye, Q.Q. Chen, and X.J. Zhao, “The Thermal Characteristics of the Ball Screw Feed System on a Gantry Machine Tool,” Appl. Mech. Mater., vol. 490–491, pp. 1008–1012, 2014, doi: 10.4028/www.scientific.net/AMM.490-491.1008.
  • [8] D. Su, Y. Li, W. Zhao, and H. Zhang, “Transient thermal error modeling of a ball screw feed system,” Int. J. Adv. Manuf. Technol., vol. 124, no. 7, pp. 2095–2107, 2023, doi: 10.1007/s00170-022-10457-z.
  • [9] J. Zaplata, “Measurements of temperature of CNC machine tool ball screw utilising IR method,” Int. J. Appl. Mech., vol. 22, no. 3, pp. 769–777, 2017, doi: 10.1515/ijame-2017-0049.
  • [10] T. Li, T. Sun, Y. Zhang, and C. Zhao, “Prediction of thermal error for feed system of machine tools based on random radial basis function neural network,” Int. J. Adv. Manuf. Technol., vol. 114, no. 5, pp. 1545–1553, 2021, doi: 10.1007/s00170-021-06899-6.
  • [11] X.-L. Deng, et al., “Multi-source heterogeneous information acquiring test experiment and platform construction for CNC machine tool,” Opt. Precis. Eng., vol. 30, no. 12, pp. 1440-1451, 2022, doi: 10.37188/OPE.20223012.1440. (in Chinese)
  • [12] X.-L. Deng, et al., “Temperature measurement point selection method of multi-machine tool based on weighted fusion matris system clustering,” J. Zhejiang Univ. Eng. Sci., vol. 57, no. 6, pp. 1147–1156, 2023, doi: 10.3785/j.issn.1008-973X.2023.06.010. (in Chinese)
  • [13] A. Oyanguren, J. Larranaga, and I. Ulacia, “Thermo-mechanical modelling of ball screw preload force variation in different working conditions,” Int. J. Adv. Manuf. Technol., vol. 97, pp. 723–739, 2018, doi: 10.1007/s00170-018-2008-8.
  • [14] H. Shi, C. Ma, and J. Yang, “Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools,” Int. J. Mach. Tools Manuf., vol. 97, pp. 60–71, 2015, doi: 10.1016/j.ijmachtools.2015.07.003.
  • [15] Z.-Z. Xu, C. Choi, L. Liang, D. Li, and S.-K. Lyu, “Study on a novel thermal error compensation system for high-precision ball screw feed drive (1st report: Model, calculation and simulation),” Int. J. Precis. Eng. Manuf., vol. 16, no. 9, pp. 2005–2011, 2015, doi: 10.1007/s12541-015-0261-4.
  • [16] X. Min and S. Jiang, “A thermal model of a ball screw feed drive system for a machine tool,” J. Mech. Eng. Sci., vol. 255, pp. 187–193, 2011, doi: 10.1243/09544062JMES2148.
  • [17] Z.-H. Li, K.-G. Fan, and Y. Zhan, “Time-varying positioning error modeling and compensation for ball screw systems based on simulation and experiment analysis,” Int. J. Adv. Manuf. Technol., vol. 73, pp. 773–782, 2014, doi: 10.1007/s00170-014-5865-9.
  • [18] X.-L. Deng et al., “Thermal characteristics analysis and test of spindle-column system for CNC machine tool,” Opt. Precis. Eng., vol. 28, no. 3, pp. 601-609, 2020, doi: 10.3788/OPE.20202803.0601. (in Chinese)
  • [19] H. Lamb, Hydrodynamics. Beijing, World Book Publishing Company, 2015.
  • [20] S.-M. Yang and W.-X. Tao, Thermal transfer. Beijing, Higher Education Press, 2006.
  • [21] A. Verl and S. Frey, “Correlation between feed velocity and preloading in ball screw drive,” CIRP Ann. Manuf. Technol., vol, 59, pp. 429–432, 2010, doi: 10.1016/j.cirp.2010.03.136.
  • [22] J. Yang, D. Zhang, X. Mei, L. Zhao, C. Ma, and H. Shi, “Thermal error simulation and compensation in a jig-boring machine equipped with a dual-drive servo feed system,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 229, no. 1_suppl, pp. 43–63, Nov. 2014, doi: 10.1177/0954405414555592.
  • [23] M. Gebhardt, J. Mayr, N. Furrer, T. Widmer, S. Weikert, and W. Knapp, “High precision grey-box model for compensation of thermal errors on five-axis machines,” CIRP Ann., vol. 63, no. 1, pp. 509–512, 2014, doi: 10.1016/j.cirp.2014.03.029.
  • [24] X.-L. Deng, J.-Z. Fu, Y. He, and Z.-Ch. Chen, “Muti-field coupling thermal characteristics analysis for spindle system of precision CNC machine tool,” J. Zhejiang Univ. Eng. Sci., vol. 47, no. 10, pp. 1863–1870, 2013, doi: 10.3785/j.issn.1008-973X.2013.10.024. (in Chinese)
  • [25] W.-T. Li, B.-H. Huang, and Z.-B. Bi, Theoretical analysis and application of thermal stress, Beijing: China Electric Power Press, 2004.
  • [26] P. Yin, Y.-H. Zheng, and X.-C. Qing, “Finite element analysis of precision CNC machine tool feed system,” Digital Manuf. Sci., vol. 20, no. 1, pp. 39–44, 2022, doi: 10.3963/j.issn.1672-3236.2022.01.008. (in Chinese)
  • [27] D.-X. Cheng, Mechanical Design Manual. Beijing, Publishing House of Electronics Industry, 2007.
  • [28] X.-H. Xu, G.-P. Jiang, X.-G. Han, and Z.-P. Zhang, “Analysis and Calculation of Comprehensive Axial Deformations of Ball Screw-Bearing in Ball Screw Support Units,” China Mech. Eng., vol. 34, no. 7, pp. 830–837, 2023, doi: 10.3969/j.issn.1004-132X.2023.07.009. (in Chinese)
  • [29] X.-L. Deng, J.-Z. Fu, H.-Y. Shen, and Z.-Ch. Chen, “Thermal equilibrium test for multi spindle system of precision CNC machine tool,” J. Zhejiang Univ. Eng. Sci., vol. 48, no. 9, pp. 1645–1653, 2014, doi: 10.3785/j.issn.1008-973X.2014.09.015. (in Chinese)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe2766ee-115a-4f6f-98bf-8a3881efaa61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.