PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simple three-stage frequency-stabilized diode laser system using injection-locking and tapered amplifier

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We developed a three-stage, amplifying, tunable diode laser system that comprises a master laser in a Littrow configuration, frequency-stabilized by dichroic atomic vapour laser lock, acousto-optic frequency shifter, injection-locked slave laser, and tapered amplifier. The slave amplifies the injected frequency-shifted master beam while suppressing (within 0.5%) the strong dependence of its intensity on the acousto-optic frequency shifter carrier frequency, thus acting as a strongly saturated optical limiting amplifier with constant output power. The resulting beam is then amplified in a tapered amplifier. The system provides an output power above 700 mW at a wavelength of 780 nm, with a time-averaged linewidth of 0.6 MHz, and a frequency drift below 2 MHz/h. Dichroic atomic vapour laser lock enables frequency stabilization in the range of 400 MHz around D2 lines of rubidium. The mode-hop-free tuning range amounts to 2 GHz. Determined by the acousto-optic frequency shifter model used, the fine-tuning range (recision of few tens kHz) spans 70 MHz. A description of the system was presented and its performance was tested. The basic components have been designed in our laboratory.
Rocznik
Strony
art. no. e140146
Opis fizyczny
Bibliogr. 100 poz., rys., fot., wykr.
Twórcy
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
Bibliografia
  • [1] Welch, D. F. A brief history of high-power semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1470–1477 (2000). https://doi.org/10.1109/2944.902203
  • [2] Wieman, C. E & Hollberg, L. Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1–20 (1991). https://doi.org/10.1063/1.1142305
  • [3] Galbács, G. A review of applications and experimental improvements related to diode laser atomic spectroscopy. Appl. Spectrosc. Rev. 41, 259–303 (2006) . https://doi.org/10.1080/05704920600620378
  • [4] Mroziewicz, B. External cavity wavelength tunable semiconductor lasers: a review. Opto-Electron. Rev. 16, 347–366 (2008). https://doi.org/10.2478/s11772-008-0045-9
  • [5] Nasim, H. & Jamil, Y. Recent advancements in spectroscopy using tunable diode lasers. Laser Phys. Lett. 10, 043001 (2013). https://doi.org/10.1088/1612-2011/10/4/043001
  • [6] MacAdam, K. B., Steinbach A. & Wieman, C. A narrow-band tunable diode laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb. Am. J. Phys. 60, 1098–1111 (1992). https://doi.org/10.1119/1.16955
  • [7] Merimaa, M. et al. Compact external-cavity diode laser with a novel transmission geometry. Opt. Commun. 174, 175–180, (2000). https://doi.org/10.1016/S0030-4018(99)00654-9
  • [8] Laurila, T., Joutsenoja, T., Hernberg, R. & Kuittinen, M. Tunable external-cavity diode laser at 650 nm based on a transmission diffraction grating. Appl. Opt. 41, 5632–5637 (2002). https://doi.org/10.1364/AO.41.005632
  • [9] Hoppe, M. et al. Construction and characterization of external cavity diode lasers based on a microelectromechanical system device. IEEE J. Sel. Top. Quantum Electron. 25, 2700109 (2019). https://doi.org/10.1109/JSTQE.2019.2912059
  • [10] Hieta, T., Vainio, M., Moser, C. & Ikonen, E. External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range. Opt. Commun. 282, 3119–3123 (2009). https://doi.org/10.1016/j.optcom.2009.04.047
  • [11] Luvsandamdin, E. et al. Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space. Opt. Express. 22, 7790–7798 (2014). https://doi.org/10.1364/OE.22.007790
  • [12] Rauch, S. & Sacher, J. Compact Bragg grating stabilized ridge waveguide laser module with a power of 380 mW at 780 nm. IEEE Photon. Technol. Lett. 27, 1737–1740 (2015). https://doi.org/10.1109/LPT.2015.2438545
  • [13] Allard, F., Maksimovic, I., Abgrall, M. & Laurent, Ph. Automatic system to control the operation of an extended cavity diode laser. Rev. Sci. Instrum. 75, 54–58 (2004). https://doi.org/10.1063/1.1634359
  • [14] Gilowski, M. et al. Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms. Opt. Commun. 280, 443–447 (2007). https://doi.org/10.1016/j.optcom.2007.08.043
  • [15] Thompson, D. J. & Scholten, R. E. Narrow linewidth tunable external cavity diode laser using wide bandwidth filter. Rev. Sci. Instrum 83, 023107 (2012). https://doi.org/10.1063/1.3687441
  • [16] Yang, W., Joshi, A., Wang, H. & Xiao, M. Simple method for frequency locking of an extended-cavity diode laser. Appl. Opt. 43, 5547–5551 (2004). https://doi.org/10.1364/AO.43.005547
  • [17] Li, H. & Telle, H. R. Efficient frequency noise reduction of GaA1As semiconductor lasers by optical feedback from an external high-finesse resonator. IEEE J. Quantum Electron. 25, 257–264 (1989). https://doi.org/10.1109/3.18538
  • [18] Hayasaka, K. Frequency stabilization of an extended-cavity violet diode laser by resonant optical feedback. Opt. Commun. 206, 401–409 (2002). https://doi.org/10.1016/S0030-4018(02)01446-3
  • [19] Vassiliev, V. V. et al. Narrow-line-width diode laser with a high-Q microsphere resonator. Opt. Comm. 158, 305–312 (1998). https://doi.org/10.1016/S0030-4018(98)00578-1
  • [20] Liang, W. et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt. Lett. 35, 2822–2824 (2010). https://doi.org/10.1364/OL.35.002822
  • [21] Ricci, L. et al. A compact grating-stabilized diode laser system for atomic physics. Opt. Commun. 117, 541–549 (1995). https://doi.org/10.1016/0030-4018(95)00146-Y
  • [22] Arnold, A. S., Wilson, J. S. & Boshier, M. G. A simple extended-cavity diode laser. Rev. Sci. Instrum. 69, 1236–1239 (1998). https://doi.org/10.1063/1.1148756
  • [23] Harvey, K. C. & Myatt, C. J. External-cavity diode laser using a grazing-incidence diffraction grating. Opt. Lett. 16, 910–912 (1991). https://doi.org/10.1364/OL.16.000910
  • [24] Stry, S. et al. Widely tunable diffraction limited 1000 mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy. Appl. Phys. B 85, 365–374 (2006). https://doi.org/10.1007/s00340-006-2348-1
  • [25] Nilse, L., Davies, H. J. & Adams, C. S. Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point. Appl. Opt. 38, 548–553 (1999). https://doi.org/10.1364/AO.38.000548
  • [26] Saliba, S. D., Junker, M., Turner, L. D. & Scholten, R. E. Mode stability of external cavity diode lasers. Appl. Opt. 48, 6692–6700 (2009). https://doi.org/10.1364/AO.48.006692
  • [27] Petridis, C., Lindsay, I. D., Stothard, D. J. M. & Ebrahimzadeh, M. Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating. Rev. Sci. Instrum. 72, 3811–3815 (2001). https://doi.org/10.1063/1.1405783
  • [28] Hult, J., Burns, I. S. & Kaminski, C. F., Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers. Appl. Opt. 44, 3675–3685 (2005). https://doi.org/10.1364/AO.44.003675
  • [29] Vassiliev, V. V., Zibrov, S. A. & Velichansky, V. L. Compact extended-cavity diode laser for atomic spectroscopy and metrology. Rev. Sci. Instrum. 77, 013102 (2006). https://doi.org/10.1063/1.2162448
  • [30] Führer, T., Stang, D. & Walther, T. Actively controlled tuning of an external cavity diode laser by polarization spectroscopy. Opt. Express 17, 4991–4996 (2009). https://doi.org/10.1364/OE.17.004991
  • [31] Repasky, K. S., Nehrir, A. R., Hawthorne, J. T., Switzer, G. W. & Carlsten, J. L. Extending the continuous tuning range of an external-cavity diode laser. Appl. Opt. 45, 9013-9020 (2006). https://doi.org/10.1364/AO.45.009013
  • [32] Boshier, M. G., Berkeland, D., Hinds, E. A. & Sandoghdar, V. External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy. Opt. Comun. 85, 335–359 (1991). https://doi.org/10.1016/0030-4018(91)90490-5
  • [33] Dutta, S., Elliott, D. S. & Chen, Y. P. Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating. Appl. Phys. B 106, 629–633 (2012). https://doi.org/10.1007/s00340-011-4841-4
  • [34] Zhu, Y., Liu Z., Zhang, X., Shao, S. & Yan, H. Dynamic mode matching of internal and external cavities for enhancing the mode-hop-free synchronous tuning characteristics of an external-cavity diode laser. Appl. Phys. B 125, 217 (2019). https://doi.org/10.1007/s00340-019-7335-4
  • [35] Lotem, H., Pan, Z. & Dagenais, M. Tunable external cavity diode laser that incorporates a polarization half-wave plate. Appl. Opt. 31, 7530–7532 (1992). https://doi.org/10.1364/AO.31.007530
  • [36] Saliba, S. D. & Scholten, R. E., Linewidths below 100 kHz with external cavity diode lasers. Appl. Opt. 48, 6961–6966, (2009). https://doi.org/10.1364/AO.48.006961
  • [37] Genty, G., Gröhn, A., Talvitie, H., Kaivola, M. & Ludvigsen, H. Analysis of the linewidth of a grating-feedback GaAlAs laser. IEEE J. Quantum Electron. 36, 1193–1198 (2000). https://doi.org/10.1109/3.880660
  • [38] Loh, H. et al. Influence of grating parameters on the linewidths of external-cavity diode lasers. Appl. Opt. 45, 9191–9197 (2006). https://doi.org/10.1364/AO.45.009191
  • [39] Talvitie, H., Pietiläinen, A., Ludvigsen, H. & Ikonen, E. Passive frequency and intensity stabilization of extended-cavity diode lasers. Rev. Sci. Instrum. 68, 1–7 (1997). https://doi.org/10.1063/1.1147810
  • [40] Turner, L. D., Weber, K. P., Hawthorn, C. J. & Scholten, R. E. Frequency noise characterisation of narrow linewidth diode lasers. Opt. Comm. 201, 391–397 (2002). https://doi.org/10.1016/S0030-4018(01)01689-3
  • [41] Bennetts, S. et al. External cavity diode lasers with 5 kHz linewidths and 200 nm tuning range at 1.55 μm. Opt. Expr. 22, 10642–10654 (2014). https://doi.org/10.1364/OE.22.010642
  • [42] Sahagun, D., Bolpasi, V. & von Klitzing, W. A simple and highly reliable laser system with microwave generated repumping light for cold atom experiments. Opt.Commun. 290, 110–114 (2013). https://doi.org/10.1016/j.optcom.2012.10.013
  • [43] Cook, E. C., Martin, P. J., Brown-Heft, T. L., Garman, J. C. & Steck, D. A. High-passive-stability diode-laser design for use in atomic-physics experiments. Rev. Sci. Instrum. 83, 043101 (2012). https://doi.org/10.1063/1.3698003
  • [44] Libbrecht, K. G. & Hall, J. A low-noise high-speed diode laser current controller. Rev. Sci. Instrum. 64, 2133–2135 (1993). https://doi.org/10.1063/1.1143949
  • [45] Lazar, J., Jedlička, P., Čip, O. & Ružička, B. Laser diode current controller with a high level of protection against electromagnetic interference. Rev. Sci. Instrum. 74, 3816–3819 (2003). https://doi.org/10.1063/1.1593783
  • [46] Erickson, C. J., Zijll, M. V., Doermann, G. & Durfee, D. S. An ultra-high stability, low-noise laser current driver with digital control. Rev. Sci. Instrum. 79, 073107 (2008). https://doi.org/10.1063/1.2953597
  • [47] Taubman, M. S. Low-noise high-performance current controllers for quantum cascade lasers. Rev. Sci. Instrum. 82, 064704 (2011). https://doi.org/10.1063/1.3600602
  • [48] Meyrath, T. P. An analog current controller design for laser diodes. Atom Optics Laboratory Center for Nonlinear Dynamics University of Texas at Austin, https://atomoptics-nas.uoregon.edu/ta_circuit/ meyrath_laser_diode.pdf (2003), (Accessed: 30th July 2021).
  • [49] Madhavan Unni, P. K., Gunasekaran, M. K. & Kumar, A. ±30 μK temperature controller from 25 to 103 °C: Study and analysis. Rev. Sci. Instrum. 74, 231 (2003). https://doi.org/10.1063/1.1529299
  • [50] Libbrecht, K. G. & Libbrecht, A. W. A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute accuracy. Rev. Sci. Instrum. 80, 126107 (2009). https://doi.org/10.1063/1.3274204
  • [51] Millett-Sikking, A., Hughes, I. G., Tierney, P. & Cornish, S. L. DAVLL lineshapes in atomic rubidium. J. Phys. B 40, 187–198 (2007). https://doi.org/10.1088/0953-4075/40/1/017
  • [52] Krzemień, L. et al. Laser frequency stabilization by magnetically assisted rotation spectroscopy. Opt. Commun. 284, 1247–1253 (2011). https://doi.org/10.1016/j.optcom.2010.11.024
  • [53] Black, E. D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001). https://doi.org/10.1119/1.1286663
  • [54] Appel, J., MacRae, A. & Lvovsky, A. I. A versatile digital GHz phase lock for external cavity diode lasers. Meas. Sci. Technol. 20, 055302 (2009). https://doi.org/10.1088/0957-0233/20/5/055302
  • [55] Chéron, B., Gilles, H. Hamel, J., Moreau, O. & Sorel, H. Laser frequency stabilization using Zeeman effect. J. Physique III France 4, 401–406 (1994). (in French) https://doi.org/10.1051/jp3:1994136
  • [56] Corwin, K. L., Lu, Z.-T., Hand, C. F., Epstein, R. J. & Wieman, C. E. Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor. Appl. Opt. 37, 3295–3298 (1998). https://doi.org/10.1364/AO.37.003295
  • [57] Pustelny, S., Schultze, V., Scholtes, T. & Budker, D. Dichroic atomic vapor laser lock with multi-gigahertz stabilization range. Rev. Sci. Instrum. 87, 063107 (2016). https://doi.org/10.1063/1.4952962
  • [58] Wąsik, G., Gawlik, W., Zachorowski, J. & Zawadzki, W. Laser frequency stabilization by Doppler-free magnetic dichroism. Appl. Phys. B 75, 613–619 (2002). https://doi.org/10.1007/s00340-002-1041-2
  • [59] Harris, M. L., Cornish, S. L., Tripathi, A. & Hughes, I. G. Optimization of sub-Doppler DAVLL on the rubidium D2 line. J. Phys. B: At. Mol. Opt. Phys. 41, 085401 (2008). https://doi.org/10.1088/0953-4075/41/8/085401
  • [60] Marchant, A. L. et al. Off-resonance laser frequency stabilization using the Faraday effect. Opt. Lett. 36, 64–66 (2011). https://doi.org/10.1364/OL.36.000064
  • [61] Walpole, J. N. Semiconductor amplifiers and lasers with tapered gain regions. Opt. Quant. Electron. 28, 623–645 (1996). https://doi.org/10.1007/BF00411298
  • [62] Jechow, A. et al. 1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz. Opt. Commun. 277, 161–165 (2007). https://doi.org/10.1016/j.optcom.2007.05.003
  • [63] Bayram, S. B. & Coons, R. W. Operation of a frequency-narrowed high-beam quality broad-area laser by a passively stabilized external cavity technique. Rev. Sci. Instrum. 78, 116103 (2007). https://doi.org/10.1063/1.2804015
  • [64] Sell, J. F., Miller, W., Wright, D., Zhdanov, B. V. & Knize, R. J. Frequency narrowing of a 25 W broad area diode laser. Appl. Phys. Lett. 94, 051115 (2009). https://doi.org/10.1063/1.3079418
  • [65] Goyal, A. K., Gavrilovic, P. & Po, H. Stable single-frequency operation of a high-power external cavity tapered diode laser at 780 nm. Appl. Phys. Lett. 71, 1296–1298 (1997). https://doi.org/10.1063/1.119876
  • [66] Wakita, A. & Sugiyama, K. Single-frequency external-cavity tapered diode laser in a double-ended cavity configuration. Rev. Sci. Instrum. 71, 1–4 (2000). https://doi.org/10.1063/1.1150150
  • [67] Chi, M. et al. Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier. Opt. Express 13, 10589–10596 (2005). https://doi.org/10.1364/OPEX.13.010589
  • [68] Voigt, D., Schilder, E. C., Spreeuw, R. J. C. & van Linden van den Heuvell, H. B. Characterization of a high-power tapered semiconductor amplifier system. Appl. Phys. B 72, 279–284 (2001). https://doi.org/10.1007/s003400100513
  • [69] Lang, R. Injection locking properties of a semiconductor laser. IEEE J. Quantum. Electron. 18, 976–983 (1982). https://doi.org/10.1109/JQE.1982.1071632
  • [70] Blin, S. et al. Phase and spectral properties of optically injected semiconductor lasers. C. R. Phys. 4, 687–699 (2003). https://doi.org/10.1016/S1631-0705(03)00083-5
  • [71] Shvarchuck, I., Dieckmann, K., Zielonkowski, M. & Walraven, J. T. M. Broad-area diode-laser system for a rubidium Bose−Einstein condensation experiment. Appl. Phys. B 71, 475–480 (2000). https://doi.org/10.1007/s003400000395
  • [72] Sasaki, K., Yoneyama, T., Nakamura, T., Sato, S. & Takeyama, A. Semiconductor laser based, injection locking maintaining broad linewidth generated by a direct current modulation of a master laser. Rev. Sci. Instrum. 77, 096107 (2006). https://doi.org/10.1063/1.2349595
  • [73] Wilson, A. C., Sharpe, J. C., McKenzie, C. R., Manson, P. J. & Warrington, D. M. Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier. Appl. Opt. 37, 4871–4975 (1998). https://doi.org/10.1364/AO.37.004871
  • [74] Nyman, R. A. et al. Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments. Rev. Sci. Instrum. 77, 033105 (2006). https://doi.org/10.1063/1.2186809
  • [75] Xiong, Y., Murphy, S., Carlsten, J. L. & Repasky, K. Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser. Opt. Eng. 45, 124205 (2006). https://doi.org/10.1117/1.2404925
  • [76] Bolpasi, V. & von Klitzing, W. Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μw. Rev. Sci. Instrum. 81, 113108 (2010). https://doi.org/10.1063/1.3501966
  • [77] Kangara, J. C. B. et al. Design and construction of cost-effective tapered amplifier systems for laser cooling and trapping experiments. Am. J. Phys. 82, 805–817 (2014). https://doi.org/10.1119/1.4867376
  • [78] Hawthorn, C. J. Weber, K. P. & Scholten, R. E. Littrow configuration tunable external cavity diode laser with fixed direction output beam. Rev. Sci. Instrum. 72, 4477–4479 (2001). https://doi.org/10.1063/1.1419217
  • [79] Kowalski, K. DLC 300 Laser Controller. Operating Manual. Institute of Physics PAS. http://info.ifpan.edu.pl/ON-2/on22/MOT/ current_controller.html (Accessed: 30th July 2021)
  • [80] Kowalski, K. LTC302 Temperature Controller. Operating Manual. Institute of Physics PAS. http://info.ifpan.edu.pl/ON-2/on22/MOT/ temperature_controller.html (Accessed: 30th July 2021)
  • [81] Yashchuk, V. V., Budker, D. & Davis, J. R. Laser frequency stabilization using linear magneto-optics. Rev. Sci. Instrum. 71, 341–346 (2000). https://doi.org/10.1063/1.1150205
  • [82] Beverini N., Maccioni, E., Marsili, P., Ruffini, A. & Sorrentino. F. Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell. Appl. Phys. B 73, 133–138 (2001). https://doi.org/10.1007/s003400100618
  • [83] Donley, E. A., Heavner, T. P., Levi, F., Tataw, M. O. & Jefferts, S. R. Double-pass acousto-optic modulator system. Rev. Sci. Instrum. 76, 063112 (2005). https://doi.org/10.1063/1.1930095
  • [84] de Carlos-López, E., López, J. M., López, S., Espinosa, M. G. & Lizama, L. A. Note: Laser frequency shifting by using two novel triple-pass acousto-optic modulator configurations. Rev. Sci. Instrum. 83, 116102 (2012). https://doi.org/10.1063/1.4758998
  • [85] Buchkremer, F. B. J., Dumke, R., Buggle, Ch., Birkl, G. & Termer, W. Low-cost setup for generation of 3 GHz frequency difference phase-locked laser light. Rev. Sci. Instrum. 71, 3306–3308 (2000). https://doi.org/10.1063/1.1287633
  • [86] Yun, P., Tan, B., Deng, W. & Gu, S. High coherent bi-chromatic laser with gigahertz splitting produced by the high diffraction orders of acousto-optic modulator used for coherent population trapping experiments. Rev. Sci. Instrum. 82, 123104 (2011). https://doi.org/10.1063/1.3665986
  • [87] Gunawardena, M., Hess, P., W. Strait, J. & Majumder, P. K. A frequency stabilization technique for diode lasers based on frequency-shifted beams from an acousto-optic modulator. Rev. Sci. Instrum. 79, 103110 (2008). https://doi.org/10.1063/1.3006386
  • [88] Liu, Z. & Slavik, R., Optical injection locking: from principle to applications. J. Lightw. Technol. 38, 43–59 (2020). https://doi.org/10.1109/JLT.2019.2945718
  • [89] Lau, E. K., Wong, L. J. & Wu, M. C. Enhanced modulation characteristics of optical injection-locked lasers: A tutorial. IEEE J. Sel. Top. Quantum Electron. 15, 618–633 (2009). https://doi.org/10.1109/JSTQE.2009.2014779
  • [90] Vainio, M., Merimaa, M. & Nyholm, K. Modulation transfer characteristics of injection-locked diode lasers. Opt. Commun. 267, 455–463 (2006). https://doi.org/10.1016/j.optcom.2006.06.054
  • [91] Gertsvolf, M. & Rosenbluh, M. Injection locking of a diode laser locked to a Zeeman frequency stabilized laser oscillator. Opt. Commun. 170, 269–274 (1999). https://doi.org/10.1016/S0030-4018(99)00470-8
  • [92] Smith, D. A. & Hughes, I. G. The role of hyperfine pumping in multilevel systems exhibiting saturated absorption. Am. J. Phys. 72, 631 (2004). https://doi.org/10.1119/1.1652039
  • [93] Siddons, P., Adams, C. S., Ge, C. & Hughes, I. G Absolute absorption on rubidium D lines: comparison between theory and experiment. J. Phys. B: At. Mol. Opt. Phys. 41, 155004 (2008). https://doi.org/10.1088/0953-4075/41/15/155004
  • [94] Haldar, M. K., Coetzee, J. C. & Gan, K. B. Optical frequency modulation and intensity modulation suppression in a master–slave semiconductor laser system with direct modulation of the master laser. IEEE J. Quantum Electron. 41, 280–286 (2005). https://doi.org/10.1109/JQE.2004.841501
  • [95] Fragkos, A., Bogris, A., Syvridis, D. & Phelan, R. Amplitude noise limiting amplifier for phase encoded signals using injection locking in semiconductor lasers. J. Lightw. Technol. 30, 764–771 (2012). https://doi.org/10.1109/JLT.2011.2178816
  • [96] Lin, P.-Y., Shiau, B.-W., Hsiao, Y.-F. & Chen, Y.-C. Creation of arbitrary spectra with an acousto-optic modulator and an injection-locked diode laser. Rev. Sci. Instrum. 82, 083108 (2011). https://doi.org/10.1063/1.3626903
  • [97] Haverkamp, M., Kochem, G. & Boucke, K. Single mode fiber coupled tapered laser module with frequency stabilized spectrum. Proc. SPIE 6876, 68761D1-11 (2008). https://doi.org/10.1117/12.764801
  • [98] Taskova, E., Gateva, S., Alipieva, E., Kowalski, K., Głódź, M. & Szonert, J. Nonlinear Faraday rotation for optical limitation. Appl. Opt. 43, 4178–4181 (2004). https://doi.org/10.1364/AO.43.004178
  • [99] Deninger, A., Kraft, S., Lison, F. & Zimmermann, C. Rubidium spectroscopy with 778- to 780-nm distributed feedback laser diodes. Proc. SPIE 5722, 5722–61 (2005). https://doi.org/10.1117/12.590386
  • [100] Wells, S. R., Miyabe, M. & Hasegawa, S. Design, construction, and characterization of a single unit external cavity diode laser coupled tapered amplifier system for atomic physics. Opt. Laser Technol. 126, 106118 (2020). https://doi.org/10.1016/j.optlastec.2020.106118
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe1d1bfc-0815-41db-af79-26b921dc4ef1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.