PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of the Base Material Parameters on Quantum and Photoconversion Efficiency of the Si Solar Cells

Autorzy
Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
The influence of a p-type Si with different resistivity, charge carrier lifetime and emitter dopant impurities concentration on the crystalline silicon solar cells parameters were analyzed and experimentally checked. The findings were determined by quasi-steady-state photoconductance, current-voltage and spectral response methods. The study was accompanied by solar device simulation using a numerical PC1D program. The highest photoconversion efficiency of 15.13 % was obtained for the moncrystalline (Cz-Si) solar cell with a base resistivity of 1.8 Ωcm and an effective charge carrier lifetime of 22.9 μs. The results clearly confirmed the importance concerning the dopant level in a Si base material in relation to open circuit voltage and short circuit current possible to obtain from the solar cell. Reduction of a base material resistivtiy leads to a lower value of an effective charge carrier lifetime and photoconversion efficiency both for Cz-Si and multicrystalline (mc-Si) solar cells. The experimental results and calculation showed, that in the case of a solar cell produced on the basis of crystalline silicon, the most important spectral range for an efficiency of a cell is covering a wavelength range of 587 ÷ 838 nm.
Twórcy
autor
  • Institute of Metallurgy and Material Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
Bibliografia
  • [1] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Prog. in Photov.: Research and Applic. 24, 905-913 (2006).
  • [2] V. V. Tyagi, N. A. A. Rahim, N. A. Rahim, J. A. L. Selvaraj, Renewable and Sustainable Energy Reviews 20, 443–461 (2013).
  • [3] S. R. Wenham, M. A. Green, M. E. Watt, R. P. Corkish, A. B. Sproul, Applied Photovoltaics, Earthscan, New York, USA, 2011.
  • [4] T. Markvart, L. Castañer, Solar Cells – Materials, Manufacture and Operation, Elsevier, Amsterdam, Netherlands, 2005.
  • [5] P. Rosenits, Photov. Internat. 4, 35-41 (2010).
  • [6] A. Goetzberger, J. Knobloch, B. Voss, Crystalline Silicon Solar Cell, John Wiley & Sons, Chichester, England, 1998.
  • [7] https://www.engineering.unsw.edu.au/energy-engineering/pc1d-software.html
  • [8] P. A. Basore, IEEE Trans. on Electron Devices 37, 337-343 (1990).
  • [9] A. G. Aberle, Crystalline silicon solar cells, Bloxham and Chambers Ltd., Rhodes, Australia, 1999.
  • [10] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, Hoboken, USA, 2007.
  • [11] S. W. Glunz, J. Dicker, P. P. Altermatt, Proc. of the 17th Europ. Photov. Sol. Ener. Conf., Munich, Germany, 1391 – 1395 (2001).
  • [12] S. K. Dhungel, J. Yoo, K. Kim, S. Ghosh, S. Jung, J. Yi, Mater. Science and Engin. (B) 134, 187-290 (2006).
  • [13] V. Osinniy, A. N. Larsen a, E. H. Dahl, E. Enebakk, A. K. Søiland, R. Tronstad, Y. Safir, Solar Ener. Mater. & Solar Cells, 101, 123–130 (2012).
  • [14] D.C. Walter, B. Lim, K. Bothe, R. Falster, V. V. Voronkov, J. Schmidt, Solar Ener. Mater. & Solar Cells 131, 51–57 (2014).
  • [15] O. Schultz, S. W. Glunz, S. Riepe, G. W. Willeke, Prog. in Photov.: Research and Applic. 14, 711-719 (2006).
  • [16] N. A. Arora, J. R. Hauser, IEEE Trans. on Electron Devices, ED-34, 430-434 (1984).
  • [17] J. Qin, W. Zhang, S. Bai, Z. Liu, Appl. Surf. Science 376, 52-61 (2016).
Uwagi
EN
This work has been carried out in the frame of IMMS statutory activity.
Identyfikator YADDA
bwmeta1.element.baztech-fe1bb44c-40cc-423f-ba19-f0e37233ca44