PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Galveston Bay dynamics under different wind conditions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Regional Ocean Model System (ROMS) was used to simulate flow and hydrographic (temperature, salinity) patterns in a shallow, relatively flat-bottomed estuary with two subestuaries, one with an elongated shape and the other with a roughly circular shape. Simulations were used to elucidate the wind stress effect on a tidally formed cyclonic gyre in Galveston Bay, Texas (USA). The form factor suggests that Galveston Bay is a mixed, mainly diurnal system with tides that propagate out of phase by less than 1 h from side to side of the estuary. Temperature and salinity patterns suggest that the influence of the estuary extends oceanward, up to a distance commensurate with the 14 m depth isobath (∼10 km offshore), during a diurnal tidal cycle. A tidally generated cyclonic gyre was observed to form in the circular subestuary, suggesting that this region may be more productive than others. This tidally formed gyre appeared to weaken and even disappear under certain wind stress conditions. Simulations suggest that the entire bay was able to flush only under northeasterly wind conditions, while for all other wind directions (northwesterly, southeasterly and southwesterly), the water appeared to pile up in the circular subestuary. Furthermore, most of the ocean-bay exchange was found to occur through the north entrance to the bay where the effects of the gyre were observed. Thus, it is expected that much of the exchange of water-borne substances, pollutants and plankton between the bay and the ocean occurs through this entrance.
Czasopismo
Rocznik
Strony
232--243
Opis fizyczny
Bibliogr. 47 poz., mapy, tab., wykr.
Twórcy
  • Universidad Veracruzana, Boca del Rio, Mexico
autor
  • Texas A&M University, Galveston, USA
  • National Autonomous University of Mexico (UNAM), Ciudad Universitaria, Mexico City, Mexico
Bibliografia
  • [1] Agardy, T., 2000. Effects of fisheries on marine ecosystems: a conservationist's perspective. ICES J. Mar. Sci. 57 (3), 761-765, http://dx.doi.org/10.1006/jmsc.2000.0721.
  • [2] Aretxabaleta, A. L., McGillicuddy, D. J., Smith, K. W., Lynch, D. R., 2008. Model simulations of the Bay of Fundy Gyre: 1. Climatological results. J. Geophys. Res. Oceans 113 (C10), C10027, http://dx.doi.org/10.1029/2007JC004480.
  • [3] Avendaño-Alvarez, O., Salas-Monreal, D., Marin-Hernandez, M., Salas-de-Leon, D. A., Monreal-Gomez, M. A., 2017. Annual hydrological variation and hypoxic zone in a tropical coral reef system. Reg. Stud. Mar. Sci. 9, 145-155, http://dx.doi.org/10.1016/j.rsma.2016.12.007.
  • [4] Becerro, M. A., Bonito, V., Paul, J. V., 2006. Effects of monsoon-driven wave action on coral reefs of Guam and implications for coral recruitment. Coral Reefs 25 (2), 193-199, http://dx.doi.org/10.1007/s00338-005-0080-7.
  • [5] Chacon-Gomez, I. C., Salas-Monreal, D., Riveron-Enzastiga, M. L., 2013. Current pattern and coral larval dispersion in a tropical coral reef system. Cont. Shelf Res. 68, 23-32, http://dx.doi.org/10.1016/j.csr.2013.08.014.
  • [6] Chen, S. N., Sanford, L. P., 2009. Lateral circulation driven by boundary mixing and the associated transport of sediments in idealized partially mixed estuaries. Cont. Shelf Res. 29 (1), 101-118, http://dx.doi.org/10.1016/j.csr.2008.01.001.
  • [7] Cloern, J. E., Alpine, A. E., Cole, B. E., Wong, R. L., Arthur, J. F., Ball, M. D., 1983. River discharge controls phytoplankton dynamics in the northern San Francisco Bay estuary. Estuar. Coast. Shelf Sci. 16 (4), 415-429, http://dx.doi.org/10.1016/0272-7714(83)90103-8.
  • [8] Dalrymple, R. W., Knight, R., Zaitlin, B. A., Middleton, G. V., 1990. Dynamics and facies model of a macrotidal sand-bar complex, Cobequid Bay-Salmon River Estuary (Bay of Fundy). Sedimentology 37 (4), 577-612, http://dx.doi.org/10.1111/j.1365-3091.1990.tb00624.x.
  • [9] Dupuis, K. W., Anis, A., 2013. Observations and modeling of wind waves in a Shallow Estuary: Galveston Bay, Texas. J. Waterw. Port C-ASCE 139 (4), 314-325, http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000160.
  • [10] Emery, W. J., Thomson, R. E., 2001. Data Analysis Methods in Physical Oceanography. Elsevier Sci., New York, 638 pp.
  • [11] Fong, D. A., 1998. Dynamics of freshwater plumes: observations and numerical modeling of the wind-forced response and alongshore freshwater transport. (Ph.d. thesis). Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, http://dx.doi.org/10.1575/1912/4784.
  • [12] Geyer, W. R., Trowbridge, J. H., Bowen, M. M., 2000. The dynamics of a partially mixed estuary. J. Phys. Oceanogr. 30 (8), 2035-2048, http://dx.doi.org/10.1175/1520-0485(2000)030<2035:TDOAPM>2.0.CO;2.
  • [13] Gill, A. E., 1982. Atmosphere-Ocean Dynamics. Acad. Press, Orlando, 662 pp.
  • [14] Goreau, T. J., Hayes, R. L., 1994. Coral bleaching and ocean “hot spots”. Ambio 23, 176-180.
  • [15] Haidvogel, D. B., Arango, H. G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P., Shchepetkin, A. F., 2000. Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans 32 (3-4), 239-281, http://dx.doi.org/10.1016/S0377-0265(00)00049-X.
  • [16] Heywood, K. J., 1996. Diel vertical migration of zooplankton in the Northeast Atlantic. J. Plankton Res. 18 (2), 163-184, http://dx.doi.org/10.1093/plankt/18.2.163.
  • [17] Holliday, D. V., Pieper, R. E., 1980. Volume scattering strengths and zooplankton distributions at acoustic frequencies between 0.5 and 3 MHz. J. Acoust. Soc. Am. 67 (1), 135-146, http://dx.doi.org/10.1121/1.384472.
  • [18] Houston Chronicle, April 6, 2014. Oil spills in Galveston Bay a routine occurrence, http://www.houstonchronicle.com/news/science-environment/article/Oil-spills-in-Galveston-Bay-a-routine-occurrence-5381283.php.
  • [19] Klinck, J. M., Hofmann, E. E., Powell, E. N., Dekshenieks, M. M., 2002. Impact of channelization on oyster production: a hydrodynamicoyster population model for Galveston Bay, Texas. Environ. Model. Assess. 7 (4), 273-289.
  • [20] Lennert-Cody, C. E., Franks, P. J., 1999. Plankton patchiness in high-frequency internal waves. Mar. Ecol.-Prog. Ser. 186, 59-66.
  • [21] Lynch, D. R., Justin, T. C. I. P., Naimie, C. E., Werner, F. E., 1995. Convergence studies of tidally-rectified circulation on Georges bank. In: Lynch, D. R., Davies, A. M. (Eds.), Quantitative Skill Assessment for Coastal Ocean Models. AGU, 153-174.
  • [22] Marchesiello, P., McWilliams, J. C., Shchepetkin, A., 2001. Open boundary conditions for long-term integration of regional oceanic models. Ocean Model. 3, 1-20, http://dx.doi.org/10.1016/S1463-5003(00)00013-5.
  • [23] O'Donnell, H. W., 2005. Investigation of flood induced pipeline failures on lower San Jacinto River. In: Pipelines 2005. Optimizing Pipeline Design, Operations, and Maintenance in Today's Economy. 451-463, http://dx.doi.org/10.1061/40800(180)35.
  • [24] Officer, C. B., 1981. Physical dynamics of estuarine suspended sediments. Mar. Geol. 40 (1-2), 1-14, http://dx.doi.org/10.1016/0025-3227(81)90039-6.
  • [25] Park, J. S., Wade, T. L., Sweet, S., 2001. Atmospheric distribution of polycyclic aromatic hydrocarbons and deposition to Galveston Bay, Texas, USA. Atmos. Environ. 35 (19), 3241-3249, http://dx.doi.org/10.1016/S1352-2310(01)00080-2.
  • [26] Rayson, M. D., Gross, E. S., Fringer, O. B., 2015. Modeling the tidal and sub-tidal hydrodynamics in a shallow, micro-tidal estuary. Ocean Model. 89, 29-44, http://dx.doi.org/10.1016/j.ocemod.2015.02.002.
  • [27] Rego, J., Li, C., 2010. Storm surge propagation in Galveston Bay during Hurricane Ike. J. Mar. Syst. 82 (4), 265-279, http://dx.doi.org/10.1016/j.jmarsys.2010.06.001.
  • [28] Robertson, R., 2006. Modeling internal tides over Fieberling Guyot: resolution, parameterization, performance. Ocean Dyn. 56 (5-6), 430-444.
  • [29] Ryan, J. P., Chavez, F. P., Bellingham, J. G., 2005. Physical-biological coupling in Monterey Bay, California: topographic influences on phytoplankton ecology. Mar. Ecol.-Prog. Ser. 287, 23-32.
  • [30] Salas Pérez, J. J., Salas-Monreal, D., Monreal-Gómez, M. A., Riveron-Enzastiga, M. L., Llasat, C., 2012. Seasonal absolute acoustic intensity, atmospheric forcing and currents in a tropical coral reef system. Estuar. Coast. Shelf Sci. 100, 102-112, http://dx.doi.org/10.1016/j.ecss.2012.01.002.
  • [31] Salas-de-Leon, D. A., Diaz-Flores, M. A., Monreal-Gómez, M. A., 2004a. Circulation and vorticity in the Southern Gulf of Mexico. In: Schroeder, W. (Ed.), Hans Ertel Memorial Book, German Commission of History of Geophysics and Cosmical Physics. p. 229.
  • [32] Salas-de-Leon, D. A., Monreal-Gomez, M. A., Signoret, M., Aldeco, J., 2004b. Anticyclonic-cyclonic eddies and their impact on near-surface chlorophyll stocks and oxygen supersaturation over the Campeche Canyon, Gulf of Mexico. J. Geophys. Res. Oceans 109, C05012, http://dx.doi.org/10.1029/2002JC001614.
  • [33] Salas-de-León, D. A., Monreal-Gómez, M. A., Díaz-Flores, M. A., Salas-Monreal, D., Velasco-Mendoza, H., Riverón-Enzástiga, M. L., Ortiz-Zamora, G., 2008. Role of near-bottom currents in the distribution of sediments within the Southern Bay of Campeche, Gulf of México. J. Coastal Res. 24 (6), 1487-1494, http://dx.doi.org/10.2112/07-0857.1.
  • [34] Salas-Monreal, D., Valle-Levinson, A., 2009. Continuously stratified flow dynamics over a hollow. J. Geophys. Res. Oceans 114 (C3), http://dx.doi.org/10.1029/2007JC004648.
  • [35] Salas-Monreal, D., Salas-de-León, D. A., Monreal-Gómez, M. A., Riverón-Enzástiga, M. L., 2009. Current rectification in a tropical coral reef system. Coral Reefs 28 (4), 871-879, http://dx.doi.org/10.1007/s00338-009-0521-9.
  • [36] Salas-Monreal, D., Salas-de-Leon, D. A., Monreal-Gomez, M. A., Riveron-Enzastiga, M. L., Mojica-Ramirez, E., 2012. Hydraulic jump in the Gulf of California. Open J. Mar. Sci. 2, 141-149, http://dx.doi.org/10.4236/ojms.2012.24017.
  • [37] Scully, M. E., Geyer, W. R., Lerczak, J. A., 2009. The influence of lateral advection on the residual estuarine circulation: a numerical modeling study of the Hudson River estuary. J. Phys. Oceanogr. 39 (1), 107-124, http://dx.doi.org/10.1175/2008JPO3952.1.
  • [38] Shanks, A. L., 1983. Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic inverte-brates and fishes shoreward. Mar. Ecol. Prog. Ser. 13 (2), 311-315.
  • [39] Spiteri, C., Slomp, C. P., Tuncay, K., Meile, C., 2008. Modeling biogeochemical processes in subterranean estuaries: effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients. Water Resour. Res. 44 (2), W02430, http://dx.doi.org/10.1029/2007WR006071.
  • [40] Storlazzi, C. D., Mc Manus, M. A., Logan, J. B., Mc Laughlin, B. E., 2006. Cross-shore velocity shear, eddies and heterogeneity in water column properties over fringing coral reefs: West Maui, Hawaii. Cont. Shelf Res. 26 (3), 401-421, http://dx.doi.org/10.1016/j.csr.2005.12.006.
  • [41] Sutherland, D. A., MacCready, P., Banas, N. S., Smedstad, L. F., 2011. A model study of the Salish Sea Estuarine circulation. J. Phys. Oceanogr. 41 (6), 1125-1143, http://dx.doi.org/10.1175/2011JPO4540.1.
  • [42] Valle-Levinson, A., Trasvina-Castro, A., Gutierrez-de-Velasco, G., Gonzalez-Armas, R., 2004. Diurnal vertical motions over a seamount of the southern Gulf of California. J. Mar. Syst. 50, 61-77.
  • [43] Wang, J., Mysak, L. A., Ingram, R. G., 1994. A three-dimensional numerical simulation of Hudson Bay summer ocean circulation: topographic gyres, separations, and coastal jets. J. Phys. Oceanogr. 24 (12), 2496-2514, http://dx.doi.org/10.1175/1520-0485(1994)024<2496:ATDNSO>2.0.CO;2.
  • [44] Wilkinson, C., Souter, D. (Eds.), 2008. Status of Caribbean Coral Reefs After Bleaching and Hurricanes in 2005. Global Coral Reef Monitoring Network, and Reef and Rainforest Research Centre, Townsville. 148 pp.
  • [45] Xinyu, G., Valle-Levinson, A., 2007. Tidal effects on estuarine circulation and outflow plume in the Chesapeake Bay. Cont. Shelf Res. 27 (1), 20-42, http://dx.doi.org/10.1016/j.csr.2006.08.009.
  • [46] Zeldis, J. R., Jillett, J. B., 1982. Aggregation of pelagic Munida gregaria (Fabricius) (Decapoda, Anomura) by coastal fronts and internal waves. J. Plankton Res. 4 (4), 839-857, http://dx.doi.org/10.1093/plankt/4.4.839.
  • [47] Zhang, S., Zheng, G., Gao, H., Roelke, D., 2014. Satellite remote sensing of chlorophyll-a concentrations in the Galveston Bay, Texas. In: AGU Fall Meeting Abstracts 1. p. 232.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe0e9334-6376-4d17-a7e1-859a2c010e58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.