PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Economic and Environmental Limitations of Sustainable Energy Transition in Europe

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ekonomiczne i środowiskowe ograniczenia zrównoważonej transformacji energetycznej w Europie
Języki publikacji
EN
Abstrakty
EN
In recent decades, the concept of sustainable development has become increasingly widespread since the United Nations Convention on Climate Change was adopted. However, it is also being overused, imitated, politicized, or even ignored. This study analyzes the current conditions and long-term consequences of the European energy transition and discusses the limitations and true economic and environmental implications of implementing energy sustainability. The paper is aimed at forming an understanding of the current environmental conditions and challenges associated with the economic, financial, and environmental consequences of introducing renewables in Europe. Research has revealed that renewables, while cleaner energy sources are not necessarily sustainable as initially suspected. There are various implications and limitations, that is: an initial carbon footprint, land footprint, recycling issues, harmful impacts on wildlife and humans, moreover the efficiency and economic implications when transitioning to a net zero. As a result, it is concluded that the basic principles of the energy transition are to be introduced and considered for it to become indeed sustainable. It is also concluded that when introducing or improving an energy model, it is crucial to consider the country's initial energy and resource base. Nuclear energy should not be disregarded and should considered to be a clean energy source, as well as a safe one, particularly in the context of national security, which is heavily dependent on energy transition.
PL
W ostatnich dziesięcioleciach koncepcja zrównoważonego rozwoju stała się coraz bardziej powszechna, szczególnie od czasu przyjęcia Konwencji ONZw sprawie zmian klimatycznych. Jednak jest on również nadużywany, upolityczniany, a nawet ignorowany.W niniejszym badaniu przeanalizowano obecne warunki i długoterminowe konsekwencje europejskiej transformacji energetycznej oraz omówiono ograniczenia oraz prawdziwe implikacje gospodarcze i środowiskowe wdrożenia zrównoważonego rozwoju energetycznego. Celem artykułu jest zrozumienie obecnych warunków środowiskowych i wyzwań związanych z ekonomicznymi, finansowymi i środowiskowymi konsekwencjami wprowadzenia odnawialnych źródeł energii w Europie.Badania wykazały, że odnawialne źródła energii, choć czystsze, niekoniecznie są zrównoważone. Istnieją różne implikacje i ograniczenia, tj.: początkowy ślad węglowy, ślad gruntowy, problemy z recyklingiem, szkodliwy wpływ na dziką przyrodę i ludzi, a ponadto problem efektywności i skutków ekonomicznych w przypadku przejścia na zero netto. Należy rozważyć i wprowadzić podstawowe zasady transformacji energetycznej, aby była ona rzeczywiście zrównoważona. Stwierdzono, że wprowadzając lub udoskonalając model energetyczny, należy wziąć pod uwagę wyjściową bazę energetyczno-zasobową danego kraju. Nie powinno się przy tym lekceważyć energetyki jądrowej, którą należy postrzegać jako źródło czystej, a zarazem bezpiecznej energii, szczególnie w kontekście narodowego bezpieczeństwa energetycznego, które jest w dużym stopniu uzależnione od transformacji energetycznej.
Czasopismo
Rocznik
Strony
66--80
Opis fizyczny
Bibliogr. 86 poz., fig., tab.
Twórcy
  • Estonian Entrepreneurship University of Applied Sciences (Estonia)
autor
  • Izmail State University of Humanities (Ukraine)
  • Technical University of Munich (Germany)
  • National University Zaporizhzhia Polytechnic (Ukraine)
  • Christiana-Albrecht University of Kiel (Germany)
  • Zhytomyr Polytechnic State University (Ukraine)
Bibliografia
  • 1. ABBASI, T., PREMALATHA, M., & ABBASI, S.A. (2011). The Return to Renewables: Will It Help in Global Warming Control? Renewable and Sustainable Energy Reviews, 15, 891–894. https://doi.org/10.1016/j.rser.2010.09.048
  • 2. AKBAR, A., & LIEW, K. M. (2020). Assessing recycling potential of carbon fiber reinforced plastic waste in production of eco-efficient cement-based materials. Journal of Cleaner Production, 274, 123001. https://doi.org/10.1016/j.jclepro.2020.123001
  • 3. AMELANG, S., APPUNN, K., KYLLMANN, C., WEHRMANN, B., & WETTENGEL, J. (2022). War in Ukraine: Tracking the impacts on German Energy and Climate Policy. Clean Energy Wire. https://www.cleanenergywire.org/news/ukraine-war-tracking-impacts-german-energy-and-climate-policy (dostęp: 2.11.2022).
  • 4. BASHYNSKA, I., MUKHAMEJANULY, S., MALYNOVSKA, Y., BORTNIKOVA, M., SAIENSUS, M., MALYNOVSKYY, Y. (2023). Assessing the Outcomes of Digital Transformation Smartization Projects in Industrial Enterprises: A Model for Enabling Sustainability. Sustainability, 15, 14075. https://doi.org/10.3390/su151914075
  • 5. BEUTELBACHER, S. (2023). Europas Traum von der Klimaneutralität droht zu platzen. Die Welt. https://www.msn.com/de-de/finanzen/top-stories/europas-traum-von-der-klimaneutralit%C3%A4t-droht-zu-platzen/ar-AA1d1ni4?ocid=msedgntp (dostęp: 30.06.2023).
  • 6. BOEHM, S., LEBLING, K., LEVIN, K., FEKETE, H., WAITE, R., GEIGES, A., NILSSON, A., WILSON, R., THWAITES, J., JAEGER, J., & PLECHATY, D. (2021). We're not on track for 1.5 degrees C. what will it take? World Resources Institute. https://www.wri.org/insights/climate-action-progress-indicators-2030-2050-targets (dostęp: 27.12.2022).
  • 7. BOEHMER-CHRISTIANSEN, S. (2002). The geopolitics of sustainable development: bureaucracies and politicians in search of the holy grail. Geoforum, 33(3), 351–365. https://linkinghub.elsevier.com/retrieve/pii/S0016718502000180
  • 8. BRANDT, A., & KRÄMER, H. (2022). Droht der deutschen Wirtschaft eine Deindustrialisierung? Wirtschaftsdienst, 102(12), 917. https://doi.org/10.1007/s10273-022-3336-8
  • 9. BRUNDTLAND, G. H. (1987). Our common future. Oxford University Press.
  • 10. CHUPRYNA, I., TORMOSOV, R., ABZHANOVA, D., RYZHAKOV, D., GONCHAR, V., & PLYS, N. (2022). Scientific and Methodological Approaches to Risk Management of Clean Energy Projects Implemented in Ukraine on the Terms of Public-Private Partnership. Proceedings of the 2022 International Conference on Smart Information Systems and Technologies (SIST), 1–8. https://doi.org/10.1109/SIST54437.2022.9945809
  • 11. DE CHALENDAR, J. A., & BENSON, S. M. (2019). Why 100% renewable energy is not enough. Joule, 3(6), 1389–1393. https://doi.org/10.1016/j.joule.2019.05.002
  • 12. DENHOLM, P., & MARGOLIS, R. M. (2008). Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States. Energy Policy, 36(9), 3531–3543. https://doi.org/10.1016/j.enpol.2008.05.035
  • 13. DESAI, J., & NELSON, M. (2017). Are we headed for a solar waste crisis. Environmental Progress. http://environmentalprogress.org/big-news/2017/6/21/are-we-headed-for-a-solar-waste-crisis (dostęp: 2.12.2022).
  • 14. DINCER, I. (2000). Renewable Energy and Sustainable Development: A Crucial Review. Renewable and Sustainable Energy Reviews, 4, 157–175. https://doi.org/10.1016/s1364-0321(99)00011-8
  • 15. DUDEK, M., BASHYNSKA, I., FILYPPOVA, S., YERMAK, S., & CICHOŃ, D. (2023). Methodology for assessment of inclusive social responsibility of the energy industry enterprises. Journal of Cleaner Production, 394, 136317. https://doi.org/10.1016/j.jclepro.2023.136317
  • 16. EARTH OVERSHOOT DAY. (2021). Past earth overshoot days – move the date of earth overshoot day. https://www.overshootday.org/newsroom/past-earth-overshoot-days/ (dostęp: 17.02.2022).
  • 17. EIB. (2022). 2022-2023 EIB climate survey, part 1 of 2: Majority of Europeans say the war in Ukraine and high energy prices should accelerate the green transition. https://www.eib.org/en/surveys/climate-survey/5th-climate-survey/eu-usa-china (dostęp: 2.11.2022).
  • 18. ELLABBAN, O., ABU-RUB, H., & BLAABJERG, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748–764. https://doi.org/10.1016/j.rser.2014.07.113
  • 19. EUROPEAN COMISSION. (2022). REPowerEU. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en (dostęp: 30.12.2023).
  • 20. EUROPEAN ENVIRONMENTAL AGENCY. (2023). Share of energy consumption from renewable sources in Europe. https://www.eea.europa.eu/en/analysis/indicators/share-of-energy-consumption-from-renewable-resources.
  • 21. EUROSTAT. (2020). Renewable energy statistics. Statistics Explained. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics (dostęp: 17.02.2022).
  • 22. EUROSTAT. (2022). Shares (Renewables) – Energy – Eurostat. https://ec.europa.eu/eurostat/web/energy/data/shares (dostęp: 27.02.2023).
  • 23. FOUNTAIN, H., & ROJANASAKUL, M. (2023). The last 8 years were the hottest on record. The New York Times. https://www.nytimes.com/interactive/2023/climate/earth-hottest-years.html?utm_campaign=like_shop_me&utm_medium=instagram&utm_source=dash+hudson&utm_content=ig-nytimes (dostęp: 27.09.2023).
  • 24. GEORGESCU-ROEGEN, N. (2013). The entropy law and the economic process. Harvard University Press.
  • 25. GERLITZ, L., MILDENSTREY, E., & PRAUSE, G. (2022). Ammonia as Clean Shipping Fuel for the Baltic Sea Region. Transport and Telecommunication Journal, 23(1), 102−112. https://doi.org/10.2478/ttj-2022-0010
  • 26. GOHLKE, J. M., HRYNKOW, S. H., & PORTIER, C. J. (2008). Health, Economy, and Environment: Sustainable Energy Choices for a Nation. Environmental Health Perspectives, 116(6), A236–A237. https://doi.org/10.1289/ehp.11602
  • 27. IPPC (Intergovernmental Panel on Climate Change). (2015). Climate Change 2014: Mitigation of Climate Change (Working group III contribution to the IPCC Fifth Assessment Report). Cambridge University Press.
  • 28. IEA (International Energy Agency). (2020). Germany 2020 – Energy Policy Review. https://www.iea.org/reports/germany-2020 (dostęp: 17.02.2022).
  • 29. IRENA. (2022). Statistical Profiles. https://www.irena.org/Data/Energy-Profiles (dostęp: 27.12.2022).
  • 30. IRENA. (2020). International renewable energy agency. Renewable Energy Target Setting. Abu Dhabi, UAE. https://www.irena.org/ (dostęp: 2.09.2021).
  • 31. ISKAKOVA, D., KIRDASINOVA, K.A., SEMBIYEVA, L., MAKYSH, S., KAZBEKOV, G., SABIROVA, R., & UMARBEKOVA, A. (2017). Innovative approaches to electric power industry management. International Journal of Economic Perspectives, 11(2), 418–428. https://doi.org/10.1016/j.gloei.2021.01.006
  • 32. JANKAUSKAS, V., RUDZKIS, P., & KANOPKA, A. (2014). Risk factors for stakeholders in renewable energy investments. Energetika, 60(2), 113–124. https://doi.org/10.6001/energetika.v60i2.2935
  • 33. KOVAL, V., SRIBNA, Y., KACZMARZEWSKI, S., SHAPOVALOVA, A., & STUPNYTSKYI, V. (2021). Regulatory policy of renewable energy sources in the European national economies. Polityka Energetyczna – Energy Policy Journal, 24(3), 61–78. https://doi.org/10.33223/epj/141990
  • 34. KORNYLIUK, A., IVASHCHENKO, A., POLISHCHUK, Y., TERESHCHENKO, O., & ONIKIIENKO, S. (2022). Government early policy responses on COVID-19 challenges in Central and Eastern Europe: SME support. Acta Innovations, 2022(42), 50–58. https://doi.org/10.32933/ActaInnovations.42.4
  • 35. KURBATOVA T., SIDORTSOVR., (2022). Trash to Hryvnias: The economics of electricity generation from landfill gas in Ukraine. International Journal of Sustainable Energy Planning and Management, 33, 53–64. https://doi.org/10.5278/ijsepm.6707
  • 36. KURBATOVA, T. (2018). Economic benefits for producers of biogas from cattle manure within energy co-operatives in Ukraine. International Journal of Sustainable Energy Planning and Management, 18, 69–80. https://doi.org/10.5278/ijsepm.2018.18.5
  • 37. KURBATOVA, T., SOTNYK, I., PROKOPENKO, O., BASHYNSKA, I., & PYSMENNA, U. (2023). Improving the Feed-in Tariff Policy for Renewable Energy Promotion in Ukraine’s Households. Energies, 16, 6773. https://doi.org/10.3390/en16196773
  • 38. KWILINSKI, A., LYULYOV, O., & PIMONENKO, T. (2023a). Environmental Sustainability within Attaining Sustainable Development Goals: The Role of Digitalization and the Transport Sector. Sustainability, 15(14), 11282. https://doi.org/10.3390/su151411282
  • 39. KWILINSKI, A., LYULYOV, O., & PIMONENKO, T. (2023b). Greenfield Investment as a Catalyst of Green Economic Growth. Energies, 16, 2372. https://doi.org/10.3390/en16052372
  • 40. KWILINSKI, A., LYULYOV, O., & PIMONENKO, T. (2023c). The Effects of Urbanisation on Green Growth within Sustainable Development Goals. Land, 12, 511. https://doi.org/10.3390/land12020511
  • 41. LUKPANOVA, Z., JUMABEKOVA, A., MUKUSHEV, A., MATAIBAYEVA, G., KADRINOV, M., & BAIMAGAMBETOVA, Z. (2022). Environmental Concerns Associated with the Development of the Agro-Industrial Complex and Analysis of Its Financing. Journal of Environmental Management and Tourism, 13(5), 1396–1406. https://doi.org/10.14505/jemt.v13.5(61).15
  • 42. MASYK, M., BURYK, Z., RADCHENKO, O., SAIENKO, V., & DZIURAKH, Y. (2023). Criteria for governance’ institutional effectiveness and quality in the context of sustainable development tasks. International Journal for Quality Research, 17(2), 501–514. https://doi.org/10.24874/IJQR17.02-13
  • 43. MATTAUCH, L., RADEBACH, A., SIEGMEIER, J., & SULIKOVA, S. (2018). Shrink emissions, not the economy. Our World in Data. https://ourworldindata.org/shrink-emissions-not-the-economy (dostęp: 27.12.2022).
  • 44. MCDONALD, R. I., FARGIONE, J., KIESECKER, J., MILLER, W. M., & POWELL, J. (2009). Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PloS one, 4(8), e6802. https://doi.org/10.1371/journal.pone.0006802
  • 45. MIKHNO, I., REDKVA, O., UDOVYCHENKO, V., TSIMOSHYNSKA, O., KOVAL, V., & KOPACZ, M. (2022). Sustainable energy supply management in the mechanical-engineering industry. Polityka Energetyczna – Energy Policy Journal, 25(4), 39–54. https://doi.org/10.33223/epj/156627
  • 46. MOORE, A. (2019). Renewable energy poses challenge for wildlife conservation. College of Natural Resources News. https://cnr.ncsu.edu/news/2019/11/renewable-energy-poses-challenge-for-wildlife-conservation/ (dostęp: 17.02.2022).
  • 47. MORIARTY, P., & HONNERY, D. (2020). Feasibility of a 100% Global Renewable Energy System. Energies, 13, 5543. https://doi.org/10.3390/en13215543
  • 48. NITSENKO, V., MARDANI, A., STREIMIKIS, J., SHKRABAK, I., KLOPOV, I., NOVOMLYNETS, O., & PODOLSKA, O. (2018). Criteria for Evaluation of Efficiency of Energy Transformation Based on Renewable Energy Sources. Montenegrin Journal of Economics, 14(4), 237–247. https://doi.org/10.14254/1800-5845/2018.14-4.17
  • 49. O'RIORDAN, T. (1988). The politics of sustainability. In Sustainable environmental management (s. 48–54). Belhaven Press.
  • 50. OAKLEAF, J. R., KENNEDY, C. M., BARUCH-MORDO, S., GERBER, J. S., WEST, P. C., JOHNSON, J. A., & KIESECKER, J. (2019). Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors. Sci Data, 6, 101. https://doi.org/10.1038/s41597-019-0084-8
  • 51. OLANIYI, E. O., PRAUSE, G., GERASIMOVA, V., & INKINEN, T. (2022). Clean Cruise Shipping: Experience from the BSR. Sustainability, 14(9), 5002. https://doi.org/10.3390/su14095002
  • 52. OSTAPENKO, O., OLCZAK, P., KOVAL, V., НREN, L., MATUSZEWSKA, D., & POSTUPNA, О. (2022). Application of Geoinformation Systems for Assessment of Effective Integration of Renewable Energy Technologies in the Energy Sector of Ukraine. Applied Sciences, 12(2), 592. https://doi.org/10.3390/app12020592
  • 53. PEHL, M., ARVESEN, A., HUMPENÖDER, F., POPP, A., HERTWICH, E. G., & LUDERER, G. (2017). Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nature Energy, 2(12), 939–945. https://doi.org/10.1038/s41560-017-0032-9
  • 54. PELLEY, S. (2023). Inside the nuclear fusion breakthrough that could be a step to unlimited clean energy in the distant future. CBS News. https://www.cbsnews.com/news/nuclear-fusion-60-minutes-2023-01-1 (dostęp: 25.01.2023).
  • 55. PERSON. (2022). German economy to lose $265 billion in added value due to war, high energy prices, study says. https://www.reuters.com/markets/europe/german-economy-lose-265-bln-added-value-due-war-high-energy-prices-study-2022-08-09/ (dostęp: 4.10.2023).
  • 56. PRAUSE, G., OLANIYI, E. O., & GERSTLBERGER, W. (2023). Ammonia Production as Alternative Energy for the Baltic Sea Region. Energies, 16(4), 1831. https://doi.org/10.3390/en16041831
  • 57. PROKOPENKO, O., CEBULA, J., CHAYEN, S., & PIMONENKO, T. (2017). Wind energy in Israel, Poland and Ukraine: Features and opportunities. International Journal of Ecology and Development, 32(1), 98–107. http://www.ceser.in/ceserp/index.php/ijed/article/view/4772 (dostęp: 20.02.2021).
  • 58. PROKOPENKO, O., CHECHEL, A., SOTNYK, I., OMELYANENKO, V., KURBATOVA, T., & NYCH, T. (2021). Improving state support schemes for the sustainable development of renewable energy in Ukraine. Polityka Energetyczna, 24(1), 85–100. https://doi.org/10.33223/epj/134144
  • 59. REDKO, K., BORYCHENKO, O., CHERNIAVSKYI, A., SAIENKO, V., & DUDNIKOV, S. (2023). Comparative analysis of innovative development strategies of fuel and energy complex of Ukraine and the EU countries: international experience. International Journal of Energy Economics and Policy, 13(2), 301–308. https://doi.org/10.32479/ijeep.14035
  • 60. REITER, G., & LINDORFER, J. (2015). Global Warming Potential of Hydrogen and Methane Production from Renewable Electricity via Power-to-Gas Technology. Int. J. Life Cycle Assess, 20, 477–489. https://doi.org/10.1007/s11367-015-0848-0
  • 61. RITCHIE, H. (2020). What are the safest and cleanest sources of energy? Our World in Data. https://ourworldindata.org/safest-sources-of-energy (dostęp: 27.12.2022).
  • 62. RITCHIE, H., ROSER, M., & ROSADO, P. (2020). CO₂ emissions. Our World in Data. https://ourworldindata.org/co2-emissions (dostęp: 2.06.2022).
  • 63. RUI LI, JIANG H., SOTNYK I., KUBATKO O., & ISMAIL ALMASHAQBEH, Y.A. (2020). The CO₂ emissions drivers of post-communist economies in Eastern Europe and Central Asia. Atmosphere, 11(9), 1019. https://doi.org/10.3390/atmos11091019
  • 64. SAIK, P., DYCHKOVSKYI, R., LOZYNSKYI, V., FALSHTYNSKYI, V., CABANA, E. C., & HRYTSENKO, L. (2021). Chemistry of the Gasification of Carbonaceous Raw Material. Materials Science Forum, 1045, 67–78. https://doi.org/10.4028/www.scientific.net/msf.1045.67
  • 65. SALA, D., BASHYNSKA, I., PAVLOVA, O., PAVLOV, K., CHORNA, N., & ROMANYUK, R. (2023). Investment and Innovation Activity of Renewable Energy Sources in the Electric Power Industry in the South-Eastern Region of Ukraine. Energies, 16, 2363. https://doi.org/10.3390/en16052363
  • 66. SAMANDARI, H., PINNER, D., BOWCOTT, H., & WHITE, O. (2022). The net-zero transition in the wake of the war in Ukraine: A detour, a derailment, or a different path? McKinsey Company. https://www.mckinsey.com/business-functions/sustainability/our-insights/the-net-zero-transition-in-the-wake-of-the-war-in-ukraine-a-detour-a-derailment-or-a-different-path (dostęp: 29.08.2022).
  • 67. SEMBIYEVA, L., SERIKOVA, M., SATYMBEKOVA, K., TULEGENOVA, Z., NURMAGANBETOVA, B., & ZHAGYPAROVA, A. (2021). Tax audit in innovative development of the energy sector of the economy: Global trends. Journal of Water and Land Development, 48(1-3), 70–80.
  • 68. SHKOLA, V., PROKOPENKO, O., STOYKA, A., NERSESOV, V., & SAPIŃSKI, A. (2021). Green Project Assessment within the Advanced Innovative Development Concept. Estudios de Economia Aplicada, 39(5). https://doi.org/10.25115/eea.v39i5.5135
  • 69. SHPAK, N., OHINOK, S., KULYNIAK, I., SROKA, W., & ANDRONICEANU, A. (2022a). Macroeconomic Indicators and CO2 Emissions in the EU Region. Amfiteatru Economic, 24(61), 817–830. https://www.amfiteatrueconomic.ro/Home_Ro.aspx
  • 70. SHPAK, N., OHINOK, S., KULYNIAK, I., SROKA, W., FEDUN, Y., GINEVIČIUS, R., & CYGLER, J. (2022b). CO2 Emissions and Macroeconomic Indicators: Analysis of the Most Polluted Regions in the World. Energies, 15(8), 2928. https://doi.org/10.3390/en15082928
  • 71. SINGH, H. V., BOCCA, R., GOMEZ, P., DAHLKE, S., & BAZILIAN, M. (2019). The energy transitions index: An analytic framework for understanding the evolving global energy system. Energy Strategy Reviews, 26, 100382. https://doi.org/10.1016/j.esr.2019.100382
  • 72. SRIBNA, Y., SKAKOVSKA, S., PANIUK, T., & HRYTSIUK, I. (2023). The Economics of Technology Transfer in The Environmental Safety of Enterprises for the Energy Transition. Economics Ecology Socium, 7, 84–96. https://doi.org/10.31520/2616-7107/2023.7.1-8
  • 73. THE ECONOMIST. (2022). The world is going to miss the totemic 1.5°C climate target. https://www.economist.com/interactive/briefing/2022/11/05/the-world-is-going-to-miss-the-totemic-1-5c-climate-target (dostęp: 23.08.2023).
  • 74. TRUTH IN ADVERTISING. (2021). November 22, Earth day 2021: Companies accused of Greenwashing. https://www.truthinadvertising.org/six-companies-accused-greenwashing/ (dostęp: 17.02.2022).
  • 75. TRYPOLSKA, G., KURBATOVA, T., PROKOPENKO, O., HOWANIEC, H., & KLAPKIV, Y. (2022). Wind and Solar Power Plant End‐of‐Life Equipment: Prospects for Management in Ukraine. Energies, 15(5), 1662. https://doi.org/10.3390/en15051662
  • 76. TURNER, R. K. (1988). Sustainability, resource conservation and pollution control: an overview. Belhaven Press.
  • 77. YMOSHENKO, M., SAIENKO, V., SERBOV, M., SHASHYNA, M., & SLAVKOVA, O. (2023). The impact of industry 4.0 on modelling energy scenarios of the developing economies. Financial and credit activity-problems of theory and practice, 1(48), 336–350. https://doi.org/10.55643/fcaptp.1.48.2023.3941
  • 78. UKRINFORM. (2022). Ukrenergo awaits decision to raise electricity exports to Europe. https://www.ukrinform.net/rubric-economy/3556868-ukrenergo-awaits-decision-to-raise-electricity-exports-to-europe.html (dostęp: 4.10.2023).
  • 79. UNEP. (2022). Emissions gap report 2022. https://www.unep.org/resources/emissions-gap-report-2022 (dostęp: 27.12.2022).
  • 80. UNFCCC. (2015). The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (dostęp: 27.12.2022).
  • 81. UNITED NATIONS. (1994). What is the United Nations Framework Convention on Climate Change? https://unfccc.int/process-and-meetings/what-is-the-united-nations-framework-convention-on-climate-change (dostęp: 27.12.2022).
  • 82. VAN DER PLOEG, F., & WITHAGEN, C. (2015). Global Warming and the Green Paradox: A Review of Adverse Effects of Climate Policies. Rev. Environ. Econ. Pol., 9, 285–303. https://doi.org/10.1093/reep/rev008
  • 83. WANG, J. B., & HUANG, L. (2021). A Game-Theoretic Analytical Approach for Fostering Energy-Saving Innovation in the Electric Vehicle Supply Chain. SAGE Open, 11(2), 21582440211021581.
  • 84. WWF (World Wide Fund). (2016). Living Planet Report 2016. https://admin.zsl.org/sites/default/files/media/2016-10/LPR_2016_Full%20Report.pdf (dostęp: 27.12.2022).
  • 85. YERESHKO, J., KOVAL, V., NESENENKO, P., KOVBASENKO, S., GUI, H., & TAMOŠIŪNIENĖ, R. (2022). Theory meets reality: Investigating the financial, economic and environmental aspects of sustainability. 12th International Scientific Conference Business and Management 2022. https://doi.org/10.3846/bm.2022.908
  • 86. ZGUROVSKY, M. (2006). Ukraine in global dimensions of sustainable development. Dzerkalo tyzhnya, 19(598), 14.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fe0e75e3-ac83-405e-8d66-d32d26c026c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.