PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing the Strength Parameters of Dispersive Soil with Microbes and Jute Fibres as Sustainable Alternative

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aim of this study was assessing the characteristics of dispersive soil based on percentage of dispersion and degree of dispersion and to improve the strength of soil using microbes. This research has utilized the Microbial Induced Calcium Carbonate process (MICP) in conjunction with jute fibre for the improvement the erosive resistance in dispersive soil. Calcite formation occurred as a consequence of microbial biomass in voids of dispersive soil. Calcium carbonate was synthesized in the gaps of the soil matrix during the microbiological process. Bacillus sphaericus bacteria were used in this experiment, along with a 1 cm length of jute raw fibre of 1 cm long and a cell concentration of 6.4E+08 CFU mL-1. The findings of the Unconfined compressive strength (UCS) test showed following of MICP treatment with and without jute fibre augmentation, UCS values causing the 11 and 13 times. Crumb test findings showed no colloidal solution was generated after microbial treatment, which was used for confirmation of the degree of dispersiveness reduction. Addition of jute fibres indicating better precipitation values of more than 4% due to the internal bonding strength. Ground renovation through microbial cementation yielded promising benefits, suggesting sustainability.
Twórcy
autor
  • Department of Civil Engineering, Aarupadai Veedu Institute of Technology, Vinayaka missions Research Foundation (Deemed to be University), Chennai 603104, India
  • Department of Civil Engineering, Aarupadai Veedu Institute of Technology, Vinayaka missions Research Foundation (Deemed to be University), Chennai 603104, India
Bibliografia
  • 1. Cheng, L., Cord-Ruwisch, R. 2012. In situ soil cementation with ureolytic bacteria by surface percolation. Ecological Engineering, 42, 64–72.
  • 2. Chen, M., Gowthaman, S., Nakashima, K., Komatsu, S., Kawasaki, S. 2021. High Water Content Peat Soil Improved by MICP Technique with Fiber- Reinforcement. 11th International Conference on Geotechnique, Construction Materials and Environment, GEOMATE International Society.
  • 3. Chuo, S.C., Mohamed, S.F., Mohd Setapar, S.H., Ahmad, A., Jawaid, M., Wani, W.A., Mohamad Ibrahim, M.N. 2020. Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials, 13(21), 4993.
  • 4. Comadran-Casas, C., Schaschke, C.J., Akunna, J.C., Jorat, M.E. 2022. Cow urine as a source of nutrients for Microbial-Induced Calcite Precipitation in sandy soil. Journal of Environmental Management, 304, 114307.
  • 5. Consoli, N.C., Vendruscolo, M.A., Fonini, A., Dalla Rosa, F. 2009. Fiber reinforcement effects on sand considering a wide cementation range. Geotextiles and Geomembranes, 27(3), 196–203.
  • 6. DeJong, J.T., Fritzges, M. B., & Nüsslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. Journal of geotechnical and geoenvironmental engineering, 132(11), 1381–1392.
  • 7. Djoković, K., Čaki, L., Šušić, N., Hadži‐Niković, G. 2018. Methods for assessment and identification
  • 8. of dispersive soils. ce/papers, 2(2–3), 205–210.
  • 9. Goodarzi, A. R., Salimi, M. 2015. Stabilization treatment of a dispersive clayey soil using granulated blast furnace slag and basic oxygen furnace slag. Applied Clay Science, 108, 61–69.
  • 10. He, J., Chu, J., Wu, S.F., Peng, J. 2016. Mitigation of soil liquefaction using microbially induced desaturation. Journal of Zhejiang University-science a, 17(7), 577–588.
  • 11. Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M., Zadhoush, A. 2012. A simple review of soil reinforcement by using natural and synthetic fibers. Construction and building materials, 30, 100–116.
  • 12. Imran, M.A., Gowthaman, S., Nakashima, K., Kawasaki, S. 2020. The influence of the addition of plant-based natural fibers (Jute) on biocemented sand using MICP method. Materials, 13(18), 4198.
  • 13. Lei, X., Lin, S., Meng, Q., Liao, X., Xu, J. 2020. Influence of different fiber types on properties of biocemented calcareous sand. Arabian Journal of Geosciences, 13(8), 1–9.
  • 14. Maharaj, A., Paige-Green, P. 2013. The SCS double hydrometer test in dispersive soil identification. In The 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6.
  • 15. Moravej, S., Habibagahi, G., Nikooee, E., Niazi, A. 2018. Stabilization of dispersive soils by means of biological calcite precipitation. Geoderma, 315, 130–137.
  • 16. Munshi, T.K., Chattoo, B.B. 2008. Bacterial population structure of the jute-retting environment. Microbial ecology, 56(2), 270–282.
  • 17. Ng, W.S., Lee, M.L., Hii, S.L. 2012. An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. International Journal of Civil and Environmental Engineering, 6(2), 188–194.
  • 18. Pakbaz, M.S., Alipour, R. 2012. Influence of cement addition on the geotechnical properties of an Iranian clay. Applied Clay Science, 67, 1–4.
  • 19. Pakbaz, M.S., Kolahi, A., Ghezelbash, G. 2022. Assessment of Microbial Induced Calcite Precipitation (MICP) in Fine Sand Using Native Microbes under Both Aerobic and Anaerobic Conditions. KSCE Journal of Civil Engineering, 26(3), 1051–1065.
  • 20. Robbins, C.W. 1984. Sodium adsorption ratioexchangeable sodium percentage relationships in a high potassium saline-sodic soil. Irrigation Science, 5(3), 173–179.
  • 21. Sadjadi, M., Nikooee, E., Habibagahi, G. 2014. Biological treatment of swelling soils using microbial calcite precipitation. Unsaturated soils: Research and applications, 917–922.
  • 22. Saidi, D. 2012. Relationship between cation exchange capacity and the saline phase of Cheliff sol. Agric. Sci., 3(4), 34–43.
  • 23. Shainberg, I., Rhoades, J.D., Prather, R.J. 1980. Effect of exchangeable sodium percentage, cation exchange capacity, and soil solution concentration on soil electrical conductivity. Soil Science Society of America Journal, 44(3), 469–473.
  • 24. Shao, W., Cetin, B., Li, Y., Li, J., Li, L. 2014. Experimental investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber. Geotechnical and Geological Engineering, 32(4), 901–910.
  • 25. Sharma, P.K., Shafaqat, S., Jamwal, S. 2021. Modeling the stimulating factors of CO2 emissions in India. Journal of Environmental Biology, 42, 481–491.
  • 26. Soon, N.W., Lee, L.M., Khun, T.C., Ling, H.S. 2014. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 140(5), 04014006.
  • 27. Stocks-Fischer, S., Galinat, J.K., Bang, S.S. 1999. Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563–1571.
  • 28. Suriya, P., Naveenkumar, K., Raj, E.M., Prabakaran, M., Kumar, R.V. (2020, September). Analyzing the shear strength of clay soil by stone column aided with geosynthetics and waste plastics. In AIP Conference Proceedings. AIP Publishing LLC, 2271(1), 030017.
  • 29. Suriya, P., Sangeetha, S.P. 2021. Increasing the Strength Properties in Weak Soil Using Microbial Techniques. Journal of Environmental Accounting and Management, 9(4), 377–389.
  • 30. Teng, F., Ouedraogo, C., Sie, Y.C. 2020. Strength improvement of a silty clay with microbiologically induced process and coir fiber. J. Geoengin, 15, 79–88.
  • 31. Umar, M., Kassim, K.A., Chiet, K.T.P. 2016. Biological process of soil improvement in civil engineering: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 767–774.
  • 32. Zhao, Y., Xiao, Z., Fan, C., Shen, W., Wang, Q., Liu, P. 2020. Comparative mechanical behaviors of four fiber-reinforced sand cemented by microbially induced carbonate precipitation. Bulletin of Engineering Geology and the Environment, 79(6), 3075–3086.
Uwagi
1. Błędna numeracja w bibliografii (poz. 8).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdfee812-b4cf-4d7f-b2f4-dd09fbe2daf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.