PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Stokes transport in layers in the water column based on long-term wind statistics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses the Stokes transport velocity for deep water random waves in given layers in the water column based on wind statistics, which can be estimated by the simple analytical tool provided here. Results are exemplified by using the Phillips and Pierson-Moskowitz model wave spectra together with long-term wind statistics from one location in the northern North Sea and from four locations in the North Atlantic. The results are relevant for e.g. assessing the drift of marine litter in the ocean based on, for example, global wind statistics.
Czasopismo
Rocznik
Strony
305--311
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
  • Norwegian University of Science and Technology (NTNU) Trondheim, Norway
autor
  • Norwegian University of Science and Technology (NTNU) Trondheim, Norway
  • Norwegian University of Science and Technology (NTNU) Trondheim, Norway
Bibliografia
  • [1] Avio, C. G., Gorki, S., Regoli, F., 2017. Plastics and microplastics in the oceans: from engineering pollutants to emerged threat. Mar. Environ. Res. 128, 2-11, http://dx.doi.org/10.1016/j.mar-envres.2016.05.012.
  • [2] Bitner-Gregersen, E. M., 2015. Joint met-ocean description for design and operations of marine structures. Appl. Ocean Res. 51, 279-292, http://dx.doi.org/10.1016/j.apor.2015.01.007.
  • [3] Breivik, Ø., Bidlot, J.-R., Janssen, A. E. M., 2016. A Stokes drift approximation based on the Phillips spectrum. Ocean Model 100, 49-56, http://dx.doi.org/10.1016/j.ocemod.2016.01.005.
  • [4] Brennecke, D., Duarte, B., Paiva, F., Cacador, I., Canning-Clode, J., 2016. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 178, 189-195, http://dx.doi.org/10.1016/j.ecss.2015.12.003.
  • [5] Bury, K. V., 1975. Statistical Models in Applied Science. John Wiley & Sons, New York, 646 pp.
  • [6] Dean, R. G., Dalrymple, R. A., 1984. Water Wave Mechanics for Engineers and Scientists. Prentice-Hall, Inc., New Jersey, USA, 353 pp.
  • [7] Johannessen, K., Meling, T. S., Haver, S., 2001. Joint distribution for wind and waves in the Northern North Sea. In: Proc. 11th Int. Offshore and Polar Engineering Conf., vol. III, Stavanger, Norway, 19-28.
  • [8] Keswani, A., Oliver, D. M., Gutierrez, T., Quilliam, R. S., 2016. Microbial hitchhikers on marine plastic debris: human exposure risks at bathing water and beach environments. Mar. Environ. Res. 118, 10-19, http://dx.doi.org/10.1016/j.marenvres.2016.04.006.
  • [9] Li, Q., Fox-Kemper, B., Breivik, Ø., Webb, A., 2017. Statistical models of global Langmuir mixing. Ocean Model 113, 95-114, http://dx.doi.org/10.1016/j.ocemod.2017.03.016.
  • [10] Mao, W., Rychlik, I., 2017. Estimation of Weibull distribution for wind speeds along ship routes. Proc. IMechE Pt. M: J. Eng. Maritime Environ. 231 (2), 464-480, http://dx.doi.org/10.1177/1475090216653495.
  • [11] Myrhaug, D., 2017. Stokes drift estimation for sea states based on long-term variation of wind statistics. Coast. Eng. J. 59 (1), 175008, http://dx.doi.org/10.1142/S0578563417500085.
  • [12] Myrhaug, D., Wang, H., Holmedal, L. E., 2014. Stokes drift estimation for deep water waves based on short-term variation of wave conditions. Coastal Eng. 88, 27-32, http://dx.doi.org/10.1016/j.coastaleng.2014.01.014.
  • [13] Myrhaug, D., Wang, H., Holmedal, L. E., Leira, B. J., 2016. Effects of water depth and spectral bandwidth on Stokes drift estimation based on short-term variation of wave conditions. Coastal Eng. 114, 169-176, http://dx.doi.org/10.1016/j.coastaleng.2016.04.001.
  • [14] Rascle, N., Ardhuin, F., Queffeulou, P., Croizè-Fillon, D., 2008. A global wave parameter database for geophysical applications. Part 1: Wave-current-turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Model. 25 (3-4), 154-171, http://dx.doi.org/10.1016/j.ocemod. 2008.07.006.
  • [15] Sherman, P., van Sebille, E., 2016. Modelling marine surface microplastic transport to assess optimal removal locations. Environ. Res. Lett. 11 (1), 014006, http://dx.doi.org/10.1088/1748-9326/11/1/014006.
  • [16] Tucker, M. J., Pitt, E. G., 2001. Waves in Ocean Engineering. Elsevier, Amsterdam, 548 pp.
  • [17] van Sebille, E., Wilcox, Ch., Lebreton, L., Maximenko, N., Hardesty, B. D., van Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F., Law, K. L., 2015. A global inventory of small floating plastic debris. Environ. Res. Lett. 10 (12), 124006, http://dx.doi.org/10.1088/1748-9326/10/12/124006.
  • [18] Webb, A., Fox-Kemper, B., 2011. Wave spectral moments and Stokes drift estimation. Ocean Model. 40, 273-288, http://dx.doi.org/10.1016/j.ocemod.2011.08.007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdfc9b70-78da-432f-959c-3d44b2a4d5f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.