PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and analysis performances of a 3.6 kW new three-phase charger based on synchronous buck converter with low harmonic distortion for urban cars

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Projektowanie i analiza wydajności nowej trójfazowej ładowarki o mocy 3,6 kW opartej na synchronicznej przetwornicy buck z niskimi zniekształceniami harmonicznymi do samochodów miejskich
Języki publikacji
EN
Abstrakty
EN
This paper deals with design and simulation of a proposed charger topology based on a three-phase PWM rectifier, to ensure a good power transfer, and in the same time, guarantee a reduced battery recharging time comparing to the conventional charger based on a single-phase charger with a diode bridge rectifier. To achieve this goal, a simulation of this proposed charger was carried out under Matlab/Simulink and a linear control was implemented in the AC side to maximize the transfer of active power using a PWM rectifier. And a control battery charging using the constant current constant voltage algorithm was used in a synchronous buck converter in the DC side. To improve its performances, a comparison was made between the two topologies in term of the quality of input electrical energy and in term of recharging time.
PL
Artykuł dotyczy zaprojektowania i symulacji proponowanej topologii ładowarki opartej na prostowniku trójfazowym PWM, aby zapewnić dobry transfer mocy, a jednocześnie zagwarantować skrócony czas ładowania baterii w porównaniu z konwencjonalną ładowarką opartą na jedno- ładowarka fazowa z diodowym mostkiem prostowniczym. Aby osiągnąć ten cel, przeprowadzono symulację proponowanej ładowarki w środowisku Matlab/Simulink i zaimplementowano sterowanie liniowe po stronie prądu przemiennego, aby zmaksymalizować transfer mocy czynnej za pomocą prostownika PWM. Natomiast w przekształtniku synchronicznym po stronie DC zastosowano sterowanie ładowaniem akumulatora algorytmem stałoprądowym i stałonapięciowym. Aby poprawić jego wydajność, dokonano porównania między dwiema topologiami pod względem jakości wejściowej energii elektrycznej i czasu ładowania.
Rocznik
Strony
251--256
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • LASTI Laboratory, National School of Applied Sciences-Khouribga, Sultan Moulay Slimane University-Morocco
autor
  • LASTI Laboratory, National School of Applied Sciences-Khouribga, Sultan Moulay Slimane University-Morocco
  • LASTI Laboratory, National School of Applied Sciences-Khouribga, Sultan Moulay Slimane University-Morocco
Bibliografia
  • [1] Z. Wei, Y. Li and L. Cai, "Electric Vehicle Charging Scheme for a Park-and-Charge System Considering Battery Degradation Costs," in IEEE Transactions on Intelligent Vehicles, vol. 3, no. 3, pp. 361-373, Sept. 2018, doi: 10.1109/TIV.2018. 2843126.
  • [2 Jia Ying Yong, Vigna K. Ramachandaramurthy, Kang Miao Tan, N. Mithulananthan, A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects, Renewable and Sustainable Energy Reviews, Volume 49, 2015, Pages 365-385, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2015.04.130.
  • [3] L. Caro, G. Ramos, D. Montenegro, and D. Celeita, “Variable harmonic distortion in electric vehicle charging stations,” in Proc. IEEE Ind. Appl.
  • [4] Subotic, N. Bodo, and E. Levi, ‘‘Single-phase on-board integrated battery chargers for EVs based on multiphase machines,’’ IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6511–6523, Sep. 2016.
  • [5] C. Shi, Y. Tang, and A. Khaligh, ‘‘A single-phase integrated onboard battery charger using propulsion system for plug-in electric vehicles,’’ IEEE Trans. Veh. Technol., vol. 66, no. 12, pp. 10899–10910, Dec. 2017.
  • [6] L. A. D. Ta, N. D. Dao, and D.-C. Lee, ‘‘High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles,’’ IEEE Trans. Power Electron., vol. 35, no. 8, pp. 8324–8334, Aug. 2020.
  • [7] S. A. Q. Mohammed and J. -W. Jung, "A Comprehensive State-of-the-Art Review of Wired/Wireless Charging Technologies for Battery Electric Vehicles: Classification/Common Topologies/Future Research Issues," in IEEE Access, vol. 9, pp. 19572-19585, 2021, doi: 10.1109/ACCESS.2021.3055027.
  • [8] B. Whitaker et al., "A High-Density, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices," in IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2606-2617, May 2014, doi: 10.1109/TPEL.2013.2279950
  • [9] J. -W. Kim and P. Barbosa, "PWM-Controlled Series Resonant Converter for Universal Electric Vehicle Charger," in IEEE Transactions on Power Electronics, vol. 36, no. 12, pp. 13578- 13588, Dec. 2021, doi: 10.1109/TPEL.2021.3072991.
  • [10] J. -S. Lee and K. -B. Lee, "Carrier-Based Discontinuous PWM Method for Vienna Rectifiers," in IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 2896-2900, June 2015, doi: 10.1109/TPEL.2014.2365014.
  • [11] J. -H. Ahn and B. K. Lee, "High-Efficiency Adaptive-Current Charging Strategy for Electric Vehicles Considering Variation of Internal Resistance of Lithium-Ion Battery," in IEEE Transactions on Power Electronics, vol. 34, no. 4, pp. 3041- 3052, April 2019, doi: 10.1109/TPEL.2018.2848550.
  • [12] N. Heng, and Q. Yu, Enhanced control technique of PWM converter under harmonically distorted voltage conditions, Proceedings of the CSEE, vol. 32, no. 9, pp. 41-48, 2012.
  • [13] Praneeth Ammanamanchi Venkata, J.S. and Williamson, S.S. (2020), Analysis and design of single-stage, two-mode AC/DC converters for on-board battery charging applications. IET Power Electronics, 13: 830-843. https://doi.org/10.1049/iet-pel.2019.0777
  • [14] Z. W. Zhang, and X. Zhang, PWM controller and its control. Mechanical Industry Press, Beijing, China, 2003.
  • [15] J. Lu, G. Zhu, D. Lin, Y. Zhang, H. Wang and C. C. Mi, "Realizing Constant Current and Constant Voltage Outputs and Input Zero Phase Angle of Wireless Power Transfer Systems With Minimum Component Counts," in IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 1, pp. 600-610, Jan. 2021, doi: 10.1109/TITS.2020.2985658.
  • [16] M. Alam, W. Eberle, D. S. Gautam, C. Botting, N. Dohmeier and F. Musavi, "A Hybrid Resonant Pulse-Width Modulation Bridgeless AC–DC Power Factor Correction Converter," in IEEE Transactions on Industry Applications, vol. 53, no. 2, pp. 1406-1415, March-April 2017, doi: 10.1109/TIA.2016.2638806.
  • [17] K. Yao, X. Ruan, X. Mao and Z. Ye, "Reducing storage capacitor of a DCM boost PFC converter," IEEE Trans. Power Electron., vol. 27, no. 1, pp. 151-160, Jan. 2012.
  • [18] D. –H. Kim, G. –Y. Choe and B. –K. Lee, “DCM analysis and inductance design method of interleaved boost converters,” IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4700-4711, Oct. 2013.
  • [19] H. Choi and L. Balogh, "A cross-coupled master–slave interleaving method for boundary conduction mode (BCM) PFC converters," IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4202-4211, Oct. 2012.
  • [20] D. W. Clark, F. Musavi and W. Eberle, “Digital DCM detection and mixed conduction mode control for boost PFC converters,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 347-355, Jan. 2014.
  • [21] H. Kim, G. Seo, B. Cho and H. Choi, “A simple average current control with on-time doubler for multiphase CCM PFC converter” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1683-1693, Mar. 2015.
  • [22] S. Heckford, "Design of an onboard battery charger for an electric vehicle", Sweden, vol. 66, pp. 1, Oct. 2001.
  • [23] Ahmed R, Yunis M, Dawood B, “Utilizing the power controller, enhance the operation of a single-phase AC to DC converter” Indonesian Journal of Electrical Engineering and Computer Science (2023) 29(3) 1224-1232. http://doi.org/10.11591/ijeecs.v29.i3.pp1224-1232.
  • [24] Krzysztof POLAKOWSKI, “Dangers to which electric vehicle users may be exposed and ways to prevent them”, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 11/2018 doi:10.15199/48.2018.11.33.
  • [25] A. Mohamed, C. Khalid and L. Abdesslam, "Modeling and Control of a Synchronous Buck Converter Fed by Single Phase System For Charging The Urban Electrical Vehicles," 2021 IEEE PES/IAS PowerAfrica, 2021, pp. 1-5, doi: 10.1109/PowerAfrica52236.2021.9543323.
  • [26] Arrach, M., Chikh, K., Lokriti, A. (2022). Modeling and Control of a PFC Forward Converter with Linear Control for Charging the Urban Cars. In: Bendaoud, M., Wolfgang, B., Chikh, K. (eds) The Proceedings of the International Conference on Electrical Systems & Automation. ICESA 2021. Springer, Singapore. https://doi.org/10.1007/978-981-19-0039-6_9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdfc0818-b923-4194-9363-edd8e21fbf88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.