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Abstract. The paper is devoted to the buckling problem of an axially compressed generalized cylindrical sandwich panel and rectangular
sandwich plate. The continuous variation of mechanical properties in the thickness direction of the structures is assumed. The generalized theory
of deformation of the straight line normal to the neutral surface is applied. The analytical model of this sandwich panel is elaborated. Three
differential equations of equilibrium of this panel based on the principle of stationary potential energy are obtained. This system of equations is
analytically solved and the critical load is derived. Moreover, the limit transformation of the sandwich panel to a sandwich rectangular plate is
presented. The critical loads of the example cylindrical panels and rectangular plates are derived.
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1. INTRODUCTION
The sandwich structures are intensively perfected in the 21st
century. The basis of this activity is primarily analytical and nu-
merical modelling of these structures. Zenkour [1] used the gen-
eralized shear deformation theory to study the static response of
a simply supported functionally graded rectangular plate sub-
jected to a transverse uniform load. Szyc et al. [2] considered
the problem of elastic buckling of an open sandwich cylindrical
thin-walled panel with three edges simply supported and one
edge free under axial compression. Pandit et al. [3] proposed
the improved higher-order zigzag plate theory for the accurate
prediction of the buckling load of a softcore sandwich plate.
Carrera and Brischetto [4] described a large variety of plate the-
ories and assessed them to evaluate the bending and vibration of
sandwich plates. Shen [5] described the geometrically nonlinear
response of inhomogeneous isotropic and functionally graded
plates and shells to nonlinear bending, post-buckling and non-
linear vibration. Reddy [6] reformulated the classical and shear
deformation beam and plate theories using the nonlocal dif-
ferential constitutive relations of Eringen and the von Kármán
nonlinear strains. Carrera et al. [7] studied the transverse nor-
mal strain effects in classical and higher-order two-dimensional
theories for one-layered and multi-layered plates and shells
embedding functionally graded material (FGM) layers. The
proposed higher-order theories have been implemented by re-
ferring to Carrera Unified Formulation (CUF). Belica et al. [8]
and Belica and Magnucki [9] investigated the stability of an
isotropic metal foam circular cylindrical shell subjected to com-
bined loads. Malinowski et al. [10] discussed the problems of
elastic stability and post-buckling behaviour of a seven-layered
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cylindrical shell subjected to uniformly distributed external
pressure and simply supported at circular edges. Magnucka-
Blandzi and Magnucki [11] studied analytically critical stresses
and equilibrium paths of axially compressed shallow cylin-
drical panels. Fazzolari [12] conducted a stability analysis of
functionally graded isotropic and sandwich plates by using the
advanced hierarchical trigonometric Ritz formulation.

Rezaei and Saidi [13] employed Carrera Unified Formulation
(CUF) for the free vibration analysis of Levy-type thick rectan-
gular porous–cellular plates. The variation of porosity through
the thickness caused mechanical properties to change along the
thickness. The effects of the coefficient of plate porosity and
the thickness–length ratio as well as the aspect ratio, on the fre-
quencies were investigated for Levy-type boundary conditions.
Abrate and Di Sciuva [14] presented an overview of the field
of equivalent single-layer theories for beams, plates and shells.
Birman and Kardomateas [15] outlined the major trends in the
research of sandwich structures concentrating on theoretical de-
velopments, novel designs and modern applications.

Magnucki [16] analyzed analytically the elastic buckling
of the cylindrical panel with symmetrically varying mechani-
cal properties in the thickness direction. Eslami [17] covered
the stability of beams, plates, and shells made of homoge-
neous/isotropic material or functionally graded materials un-
der both mechanical and thermal loads. Magnucki et al. [18]
studied critical loads and fundamental natural frequencies of a
simply supported rectangular plate with symmetrically varying
mechanical properties in the thickness direction. The plate was
subjected to compression in two directions with a uniformly
distributed load. Magnucki et al. [19] examined a circular plate
with symmetrically thickness-wise varying mechanical proper-
ties. The plate was simply supported and carried a concentrated
force located in its centre. The axisymmetric bending problem
of the plate with consideration of the shear effect was analyt-
ically and numerically studied. Magnucki et al. [20] analyzed
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simply supported beams with bi-symmetrical cross-sections un-
der a generalized load. The novel shear deformation theory of
a planar beam cross-section was formulated based on the Zhu-
ravsky shear stress formula.

Magnucki and Magnucka-Blandzi [21] presented a general-
ization of the analytical models of the sandwich structures. This
generalization concerns the continuity of symmetrical varia-
tion of mechanical properties in the thickness direction of the
structures and the individual nonlinear function of deforma-
tion of the straight normal line to the neutral surface. Carrera
et al. [22] investigated the nonlinear displacement and stress
distributions in the cross-section effect of the isotropic beam,
composite beam placed at different angles, and FG beams by
CUF theory. Wu et al. [23] developed a unified formulation
of full geometrically nonlinear refined shell theory based on
the CUF and the total Lagrangian approach to predict the post-
buckling, large-deflection, snap-through and snap-back nonlin-
ear responses with high accuracy.

Twinkle and Pitchaimani [24] investigated the buckling and
free vibration response of graphene nanoplatelets (GPL) rein-
forced porous sandwich cylindrical panels subjected to different
types of in-plane compressive loads. Different combinations of
porosity and GPL distributions for the sandwich core were con-
sidered. Magnucki et al. [25] studied analytically and numer-
ically the problem of bending a circular sandwich plate under
a concentrated force.

The subject of the paper is an axially compressed cylindri-
cal sandwich panel of radius R, angle β , length L and total
thickness h with symmetrically continuous varying mechani-
cal properties in the thickness direction (Fig. 1). This panel is
compressed along generating line in the middle surface with
a uniformly distributed load of intensity and simply supported
along four edges. The main goal of the research is to develop
an analytical model of the cylindrical sandwich panel and to
determine the critical load for this panel and for a rectangular
sandwich plate as the limit transformation of this panel.

Fig. 1. Scheme of the sandwich cylindrical panel

2. ANALYTICAL MODEL OF THE CYLINDRICAL
SANDWICH PANEL

The structures of the cylindrical sandwich panel are a composite
of two faces of thicknesses h f and one core of thickness hc and
so the total thickness h = 2h f +hc (Fig. 2).

Fig. 2. Scheme of the structures of the sandwich cylindrical panel

The variation of mechanical properties in the thickness direc-
tion of the cylindrical sandwich panel, with consideration of the
paper [21], is continuous. Young’s modulus E f is the constant
of two faces; however, this modulus of the core varies

Ec(ζ ) = E f fe(ζ ), (1)

where dimensionless function

fe(ζ ) = e0 +(1− e0)

(
2
χc

ζ

)ke

, (2)

and e0 = E0/E f – dimensionless coefficient, χc = hc/h – rela-
tive thickness of the core, ζ = z/h – dimensionless coordinate,
ke – even exponent.

The example graph of the dimensionless function (2) is
shown in Fig. 3.

Fig. 3. The example graph of the dimensionless function (2)

The analytical model of the cylindrical sandwich panel is
formulated with consideration of the papers [16] and [21].
A straight line normal to the neutral surface of the sandwich
structure before bending is a curve after bending (Fig. 4).

Taking into account the above scheme, the displacements in
the x and ϕ directions in the particular layers are as follows:
• the upper face (−1/2≤ ζ ≤−χc/2)

u(x,ϕ,ζ ) = u0(x,ϕ)−h
[

ζ
∂w
∂x

+ψ(x,ϕ)
]
, (3)

v(x,ϕ,ζ ) = v0(x,ϕ)−h
[

ζ
∂w

R∂ϕ
+φ(x,ϕ)

]
; (4)
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Fig. 4. Scheme of the deformation of the straightnormal line – the nonlinear hypothesis

• the core (−χc/2≤ ζ ≤ χc/2)

u(x,ϕ,ζ ) = u0(x,ϕ)−h
[

ζ
∂w
∂x
− fd(ζ )ψ(x,ϕ)

]
, (5)

v(x,ϕ,ζ ) = v0(x,ϕ)−h
[

ζ
∂w

R∂ϕ
− fd(ζ )φ(x,ϕ)

]
; (6)

• the lower face (χc/2≤ ζ ≤ 1/2)

u(x,ϕ,ζ ) = u0(x,ϕ)−h
[

ζ
∂w
∂x
−ψ(x,ϕ)

]
, (7)

v(x,ϕ,ζ ) = v0(x,ϕ)−h
[

ζ
∂w

R∂ϕ
−φ(x,ϕ)

]
, (8)

where w(x,ϕ) – deflection, ψ(x,ϕ) = u1(x,ϕ)/h, φ(x,ϕ) =
v1(x,ϕ)/h – dimensionless functions.

The function of deformation of the straight normal line for
the core is elaborated with consideration of the [25] in the fol-
lowing form:

fd(ζ ) =
1

C0

∫ 1−χ2
c +
(
χ2

c−4ζ 2
)

e0+8(1−e0)Jc(ζ )

fe(ζ )
dζ , (9)

where

Jc(ζ ) =
χ2

c

4(k2 +2)

[
1−
(

2
χc

ζ

)ke+2
]
,

C0 =

χ2/2∫
0

1−χ2
c +
(
χ2

c −4ζ 2
)

e0 +8(1− e0)Jc(ζ )

fe(ζ )
dζ .

The values of the deformation function (9) for the upper and
lower surfaces of the core are as follows: fd(−χc/2) =−1 and
fd(χc/2) = 1.

Thus, the strains in the particular layers are as follows:
• the upper face (−1/2≤ ζ ≤−χc/2)

ε
(u f )
x (x,ϕ,ζ ) =

∂u0

∂x
−h
[

ζ
∂ 2w
∂x2 +

∂ψ

∂x

]
, (10)

ε
(u f )
ϕ (x,ϕ,ζ ) =

∂v0

R∂ϕ
−h
[

ζ
∂ 2w

R2∂ 2ϕ
+

∂φ

R∂ϕ

]
−w(x,ϕ)

R
, (11)

γ
(u f )
xϕ (x,ϕ,ζ ) =

∂u0

R∂ϕ
+

∂v0

∂x
−h
[

2ζ
∂ 2w

∂xR∂ϕ

+
∂ψ

R∂ϕ
+

∂φ

∂x

]
, (12)

γ
(u f )
xz (x,ϕ,ζ ) = 0, γ

(u f )
ϕz (x,ϕ,ζ ) = 0; (13)

• the core (−χc/2≤ ζ ≤ χc/2)

ε
(c)
x (x,ϕ,ζ ) =

∂u0

∂x
−h
[

ζ
∂ 2w
∂x2 − fd(ζ )

∂ψ

∂x

]
, (14)

ε
(c)
ϕ (x,ϕ,ζ ) =

∂v0

R∂ϕ
−h
[

ζ
∂ 2w

R2∂ 2ϕ
− fd(ζ )

∂φ

R∂ϕ

]
− w(x,ϕ)

R
, (15)

γ
(c)
xϕ (x,ϕ,ζ ) =

∂u0

R∂ϕ
+

∂v0

∂x
−h
[

2ζ
∂ 2w

∂xR∂ϕ

− fd(ζ )

(
∂ψ

R∂ϕ
+

∂φ

∂x

)]
, (16)

γ
(c)
xz (x,ϕ,ζ ) =

d fd

dζ
ψ(x,ϕ),

(17)

γ
(c)
ϕz (x,ϕ,ζ ) =

d fd

dζ
φ(x,ϕ);
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• the lower face (χc/2≤ ζ ≤ 1/2)

ε
(l f )
x (x,ϕ,ζ ) =

∂u0

∂x
−h
[

ζ
∂ 2w
∂x2 −

∂ψ

∂x

]
, (18)

ε
(l f )
ϕ (x,ϕ,ζ ) =

∂v0

R∂ϕ
−h
[

ζ
∂ 2w

R2∂ 2ϕ
− ∂φ

R∂ϕ

]
−w(x,ϕ)

R
, (19)

γ
(l f )
xϕ (x,ϕ,ζ ) =

∂u0

R∂ϕ
+

∂v0

∂x
−h
[

2ζ
∂ 2w

∂xR∂ϕ

− ∂ψ

R∂ϕ
− ∂φ

∂x

]
, (20)

γ
(l f )
xz (x,ϕ,ζ ) = 0, γ

(l f )
ϕz (x,ϕ,ζ ) = 0. (21)

Consequently, the stresses – Hooke’s law:
• the upper face (−1/2≤ ζ ≤−χc/2)

σ
(u f )
x (x,ϕ,ζ ) =

E f

1−ν2

[
ε
(u f )
x (x,ϕ,ζ )+νε

(u f )
ϕ (x,ϕ,ζ )

]
, (22)

σ
(u f )
ϕ (x,ϕ,ζ ) =

E f

1−ν2

[
ε
(u f )
ϕ (x,ϕ,ζ )+νε

(u f )
x (x,ϕ,ζ )

]
, (23)

τ
(u f )
xϕ (x,ϕ,ζ ) =

E f

2(1+ν)
γ
(u f )
xϕ (x,ϕ,ζ ), (24)

τ
(u f )
xz (x,ϕ,ζ ) = 0, τ

(u f )
ϕz (x,ϕ,ζ ) = 0; (25)

• the core (−χc/2≤ ζ ≤ χc/2)

σ
(c)
x (x,ϕ,ζ ) =

E f

1−ν2

[
ε
(c)
x (x,ϕ,ζ )

+ νε
(c)
ϕ (x,ϕ,ζ )

]
fe(ζ ), (26)

σ
(c)
ϕ (x,ϕ,ζ ) =

E f

1−ν2

[
ε
(c)
ϕ (x,ϕ,ζ )

+ νε
(c)
x (x,ϕ,ζ )

]
fe(ζ ), (27)

τ
(c)
xϕ (x,ϕ,ζ ) =

E f

2(1+ν)
γ
(c)
xϕ (x,ϕ,ζ ) fe(ζ ), (28)

τ
(c)
xz (x,ϕ,ζ ) =

E f

2(1+ν)
γ
(c)
xz (x,ϕ,ζ ) fe(ζ ), (29)

τ
(c)
ϕz (x,ϕ,ζ ) =

E f

2(1+ν)
γ
(c)
ϕz (x,ϕ,ζ ) fe(ζ ); (30)

• the lower face (χc/2≤ ζ ≤ 1/2)

σ
(l f )
x (x,ϕ,ζ ) =

E f

1−ν2

[
ε
(l f )
x (x,ϕ,ζ )

+ νε
(l f )
ϕ (x,ϕ,ζ )

]
, (31)

σ
(l f )
ϕ (x,ϕ,ζ ) =

E f

1−ν2

[
ε
(l f )
ϕ (x,ϕ,ζ )

+ νε
(l f )
x (x,ϕ,ζ )

]
, (32)

τ
(l f )
xϕ (x,ϕ,ζ ) =

E f

2(1+ν)
γ
(l f )
xϕ (x,ϕ,ζ ), (33)

τ
(l f )
xz (x,ϕ,ζ ) = 0, τ

(l f )
ϕz (x,ϕ,ζ ) = 0, (34)

where ν f = νc = ν is Poisson’s ratio of the faces and the core
is the same.

The normal and shear forces are as follows:

Nx(x,ϕ) = h


−χ2/2∫
−1/2

σ
(u f )
x (x,ϕ,ζ )dζ

+

χc/2∫
−χc/2

σ
(c)
x (x,ϕ,ζ )dζ +

1/2∫
χ2/2

σ
(l f )
x (x,ϕ,ζ )dζ

 , (35)

Nϕ(x,ϕ) = h


−χ2/2∫
−1/2

σ
(u f )
ϕ (x,ϕ,ζ )dζ

+

χc/2∫
−χc/2

σ
(c)
ϕ (x,ϕ,ζ )dζ +

1/2∫
χ2/2

σ
(l f )
ϕ (x,ϕ,ζ )dζ

 , (36)

Sxϕ(x,ϕ) = h


−χ2/2∫
−1/2

τ
(u f )
xϕ (x,ϕ,ζ )dζ

+

χc/2∫
−χc/2

τ
(c)
xϕ (x,ϕ,ζ )dζ +

1/2∫
χ2/2

τ
(l f )
xϕ (x,ϕ,ζ )dζ

 . (37)

Substituting the expressions (22)–(24), (26)–(28) and (31)–
(33) into above (35)–(37), after integration and simply transfor-
mations, one obtains:

Nx(x,ϕ) =
E f h

1−ν2 CN

[
∂u0

∂x
+ν

(
∂v0

R∂ϕ
− w(x,ϕ)

R

)]
, (38)

Nϕ(x,ϕ) =
E f h

1−ν2 CN

[
ν

∂u0

∂x
+

∂v0

R∂ϕ
− w(x,ϕ)

R

]
, (39)

Sxϕ(x,ϕ) =
E f h

2(1+ν)
CN

(
∂u0

R∂ϕ
+

∂v0

∂x

)
, (40)

where CN = 1− (1− e0)
ke

ke +1
χc – dimensionless coefficient,

from which the strains in the middle surface of this sandwich
panel are as follows:

ε
o
x =

∂u0

∂x
=

1
E f hCN

[
Nx(x,ϕ)−νNϕ(x,ϕ)

]
, (41)

ε
o
ϕ =

∂v0

R∂ϕ
− w(x,ϕ)

R

=
1

E f hCN

[
Nϕ(x,ϕ)−νNx(x,ϕ)

]
, (42)

γ
o
xϕ =

∂u0

R∂ϕ
+

∂v0

∂x
= 2

1+ν

E f hCN
Sxϕ(x,ϕ). (43)
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Consequently, the equation of compatibility of deformation
in the middle surface of this sandwich panel is in the form:

∇
4F(x,ϕ)+

E f h
R

CN
∂ 2w
∂x2 = 0, (44)

where: F(x,ϕ) – force function, ∇4 =
∂ 4

∂x4 + 2
∂ 4

∂x2R2∂ϕ2 +

∂ 4

R4∂ϕ4 – differential operator, and the forces

Nx(x,ϕ) =
∂ 2F

R2∂ϕ2 , Nϕ(x,ϕ) =
∂ 2F
∂x2 ,

Sxϕ(x,ϕ) =−
∂ 2F

∂xR∂ϕ
.

(45)

The elastic strain energy of the sandwich panel

Uε =
1
2

L∫
0

β∫
0

{
ℜ

(u f )(x,ϕ)+ℜ
(c)(x,ϕ)

+ ℜ
(l f )(x,ϕ)

}
Rdϕ dx, (46)

where

ℜ
(u f )(x,ϕ) =

−χc/2∫
−1/2

[
σ
(u f )
x ε

(u f )
x +σ

(u f )
ϕ ε

(u f )
ϕ

+ τ
(u f )
xϕ γ

(u f )
xϕ

]
hdζ , (47)

ℜ
(c)(x,ϕ) =

χc/2∫
−χc/2

[
σ
(c)
x ε

(c)
x +σ

(c)
ϕ ε

(c)
ϕ + τ

(c)
xϕ γ

(c)
xϕ + τ

(c)
xz γ

(c)
xz

+ τ
(c)
ϕz γ

(c)
ϕz

]
hdζ , (48)

ℜ
(l f )(x,ϕ) =

1/2∫
χc/2

[
σ
(l f )
x ε

(l f )
x +σ

(l f )
ϕ ε

(l f )
ϕ

+ τ
(l f )
xϕ γ

(l f )
xϕ

]
hdζ . (49)

The work of the load

W =
1
2

No
x

L∫
0

β∫
0

(
∂w
∂x

)2

Rdϕ dx. (50)

Therefore, based on the principle of stationary total potential
energy δ (Uε −W ) = 0, the system of five partial differential
equations of equilibrium of the cylindrical panel is obtained.
Considering the expressions (41)–(43) and the force function
(45), the system is reduced to three equations of equilibrium.
Moreover, assuming the displacement function θ(x,ϕ) two un-
known dimensionless functions ψ(x,ϕ) and φ(x,ϕ) are formu-

lated in the form:

ψ(x,ϕ) =
∂θ

∂x
, φ(x,ϕ) =

∂θ

R∂ϕ
. (51)

Thus, the system of three equations of equilibrium of the
cylindrical panel is reduced to two equations of equilibrium
– the governing differential equations of the elastic buckling
problems of the cylindrical sandwich panel in the following
form:

E f h3

1−ν2

[
Cww∇

8w(x,ϕ)−Cwψϕ ∇
4
θ(x,ϕ)

]
+

E f h
R2 CN

∂ 4w
∂x4 +No

x
∂ 2

∂x2 ∇
4w(x,ϕ) = 0, (52)

Cwψϕ ∇
4w(x,ϕ)−Cψϕ ∇

4
θ(x,ϕ)

+
1
2
(1−ν)

J3

h2 ∇
2
θ(x,ϕ) = 0, (53)

where

Cww =
1

12

[
1− (1− e0)

ke

ke +3
χ

3
c

]
,

Cwψϕ =
1
4
(
1−χ

2
c
)
+ J1 ,

Cwϕ = 1−χc + J2 ,

J1 =

χc/2∫
−χc/2

fd(ζ ) fe(ζ )ζ dζ ,

J2 =

χc/2∫
−χc/2

f 2
d (ζ ) fe(ζ )dζ ,

J3 =
1

C2
0

χ2/2∫
−χc/2

[
1−χ2

c +
(
χ2

c−4ζ 2
)

e0+8(1−e0)Jc(ζ )
]2

fe(ζ )
dζ

are dimensionless coefficients.

3. CRITICAL LOAD OF THE CYLINDRICAL SANDWICH
PANEL

The system of two differential equations (52) and (53) is ap-
proximately solved. Two unknown functions of these equations
are assumed in the following form:

w(x,φ) = wa sin
(

mπ
x
L

)
sin
(

nπ
φ

β

)
,

θ(x,φ) = θa sin
(

mπ
x
L

)
sin
(

nπ
φ

β

)
,

(54)

where: wa, θa – coefficients of these functions, m, n – natural
numbers.
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Substituting these functions (54) into equations (52) and
(53), after simple transformation, one obtains

θa =
mnCmnCwψφ

mnCmnCψφ +
1−ν

2π2 J3
LRβ

h2

wa , (55)

and the critical load

No
x,CR = min

m,n

[
(Cww−Cs)

(
nπ

β

h
R

)2

C2
mn

+
(
1−ν

2)( β

nπ

)2 CN

C2
mn

]
E f h

1−ν2 , (56)

where

Cs =
mnCmnC2

wψφ

mnCmnCψφ +
1−ν

2π2 J3
LRβ

h2

,

Cmn =
m
n

Rβ

L
+

n
m

L
Rβ

are dimensionless coefficients.

For the particular case of this cylindrical sandwich panel as
the homogeneous structure (ke = 0, e0 = 1, fe(ζ ) = 1, χc =
1, CN = 1, Cww = 1/12, without shear effect Cs = 0) based
on the expressions (56), one obtains the Lorenz-Timoshenko-
Southwell critical stress

σx,CR =
No

x,CR

h
=

E f√
3(1−ν2)

h
R
. (57)

The detailed calculations of the exemplary generalized cylin-
drical sandwich panels, with consideration of paper [25], where
the material of the faces is aluminium and the material of the
core is aluminium foam, are conducted for the following data:

Example 1. The total thickness h = 20 mm, radius R =
4000 mm, length L = 4000 mm, angle β = π/3, Young’s mod-
ulus E f = 72000 MPa, Poisson’s ratio ν = 0.3, the relative
thickness of the core χc = 17/20 and dimensionless coefficient
e0 = 1/20. The results of the calculations are specified in Ta-
ble 1 and shown in Figs. 5 and 6.

Fig. 5. The graph of the critical load of the exemplary cylindrical
sandwich panel (e0 = 1/20)

Table 1
The results of calculations of the exemplary cylindrical sandwich panel

for e0 = 1/20

ke 4 10 20 30 ∞

m 6 5 5 5 6

n 3 3 3 3 2

Cs 0.00118 0.00081 0.00071 0.00067 0.00066

No
x,CR [N/mm] 2103.9 1656.8 1458.8 1385.4 1223.8

Fig. 6. The graph of the shear coefficient of the exemplary cylindrical
sandwich panel (e0 = 1/20)

Example 2. The total thickness h = 20 mm, radius R =
4000 mm, length L = 4000 mm, angle β = π/3, Young’s mod-
ulus E f = 72000 MPa, Poisson’s ratio ν = 0.3, the relative
thickness of the core χc = 17/20 and dimensionless coefficient
e0 = 1/30. The results of the calculations are specified in Ta-
ble 2 and shown in Figs. 7 and 8.

Table 2
The results of calculations of the exemplary cylindrical sandwich panel

for e0 = 1/20

ke 4 10 20 30 ∞

m 6 6 6 6 6

n 3 2 2 2 2

Cs 0.00157 0.00133 0.00118 0.00111 0.00093

No
x,CR [N/mm] 2054.9 1594.8 1393.8 1319.5 1157.3

Fig. 7. The graph of the critical load of the exemplary cylindrical
sandwich panel (e0 = 1/30)
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Fig. 8. The graph of the shear coefficient of the exemplary cylindrical
sandwich panel (e0 = 1/30)

4. CRITICAL LOAD OF THE RECTANGULAR SANDWICH
PLATE

The parallel length of this sandwich panel is b = Rβ (Fig. 1).
The rectangular sandwich plate of width b, length L and total
thickness h with symmetrically continuous varying mechanical
properties is the limit transformation of this cylindrical sand-
wich panel, then R→∞ and β → 0. Therefore, the critical load
(56) for the rectangular sandwich plate is in the following form:

No
x,CR = min

m,n

[
(Cww−Cs)

(
nπ

h
b

)2

(
m
n

b
L
+

n
m

L
b

)2
]

E f h
1−ν2 , (58)

where

Cs =
mnCmnC2

wψϕ

mnCmnCψϕ +
1−ν

2π2 J3
Lb
h2

,

Cmn =
m
n

b
L
+

n
m

L
b

are dimensionless coefficients.
For the particular case of this rectangular sandwich plate as

the homogeneous structure (ke = 0, e0 = 1, fe(ζ ) = 1, χc = 1,
CN = 1, Cww = 1/12, without shear effect Cs = 0) based on the
expressions (58), one obtains well known in the literature the
critical stress

σx,CR =
No

x,CR

h
=

π2

3(1−ν2)
E f

(
h
b

)2

. (59)

The detailed calculations of the exemplary generalized
square sandwich plate are conducted for the following data.

Example 3. The total thickness h = 20 mm, width b =
1000 mm, length L = 1000 mm, m = n = 1, Young’s mod-
ulus E f = 72000 MPa, Poisson’s ratio ν = 0.3, the relative
thickness of the core χc = 17/20 and dimensionless coefficient
e0 = 1/20. The results of the calculations are specified in Ta-
ble 3 and shown in Figs. 9 and 10.

Table 3
The results of calculations of the exemplary square sandwich plate

for e0 = 1/20

ke 4 10 20 30 ∞

Cs 0.000859 0.000779 0.000684 0.000641 0.000537

No
x,CR

[N/mm]
1366.7 1128.4 1008.9 961.9 854.1

Fig. 9. The graph of the critical load of the exemplary square sandwich
plate (e0 = 1/20)

Fig. 10. The graph of the shear coefficient of the exemplary square
sandwich plate (e0 = 1/20)

Example 4. The total thickness h = 20 mm, width b =
1000 mm, length L = 1000 mm, m = n = 1, Young’s mod-
ulus E f = 72000 MPa, Poisson’s ratio ν = 0.3, the relative
thickness of the core χc = 17/20 and dimensionless coefficient
e0 = 1/30. The results of the calculations are specified in Ta-
ble 4 and shown in Figs. 11 and 12.

Table 4
The results of calculations of the exemplary square sandwich plate

for e0 = 1/30

ke 4 10 20 30 ∞

Cs 0.001143 0.001078 0.000957 0.000900 0.000757

No
x,CR

[N/mm]
1347.4 1104.5 983.5 936.1 827.2
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Fig. 11. The graph of the critical load the exemplary square sandwich
plate (e0 = 1/30)

Fig. 12. The graph of the shear coefficient of the exemplary square
sandwich plate (e0 = 1/30)

5. CONCLUSIONS
The presented studies of the cylindrical sandwich panels and
rectangular plates allow us to formulate the following conclu-
sions:
1. The analytical expressions for a cylindrical sandwich panel

formulated in this paper can be easily converted to expres-
sions for a rectangular sandwich plate by calculating the
limit with R→+∞.

2. Values of the critical load N0
x,CR [N/mm] of the cylindrical

sandwich panel (56), (Table 1, Fig. 5 and Table 2, Fig. 7)
and also of the square sandwich plate (58), (Table 3, Fig. 9
and Table 4, Fig. 11) are decreasing with increasing the ex-
ponent value ks of the dimensionless function (2), i.e. the
sandwich structure tends to be the classical one with a con-
stant value of the core elasticity modulus.

3. Values of the shear coefficient Cs, similar to the critical load
of the cylindrical sandwich panel or the square sandwich
plate, are decreasing with increasing the exponent value ks
(Table 1, Fig. 6 and Table 2, Fig. 8) and (Table 3, Fig. 10
and Table 4, Fig. 12).

4. The presented analytical model of the cylindrical sandwich
panel is an improvement of the classical analytical model of
this structure.

5. Proposal of the topic of further research:

a) analytical and numerical FEM studies of the dynamic
stability of this cylindrical sandwich panel – linear and
nonlinear problems,

b) comparative analysis of the presented research results
with the results of calculations determined with con-
sideration of the other theories.
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