Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A numerical analysis of the thermal damage process that proceeds in biological tissue during laser irradiation is presented. Heat transfer in the tissue is assumed to be transient and two-dimensional. The internal heat source resulting from the laser irradiation based on the solution of optical diffusion equation is taken into account. Changes in tissue oxygen distribution resulting from temperature changes are analyzed using the Krogh cylinder model with Michaelis-Menten kinetics. A Hill model was used to describe the oxyhemoglobin dissociation curve. At the stage of numerical realization, the boundary element method and the finite difference method have been applied.
Słowa kluczowe
Rocznik
Tom
Strony
51--62
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Department of Computational Mechanics and Engineering, Silesian University of Technology Gliwice, Poland
Bibliografia
- [1] Niemz, M.H. (2007). Laser-tissue Interaction. Berlin, Heidelberg, New York: Springer-Verlag.
- [2] Paruch, M. (2018). Identification of the degree of tumor destruction on the basis of the Arrhenius integral using the evolutionary algorithm. International Journal of Thermal Sciences, 130, 507-517.
- [3] Jasiński, M. (2020). Numerical analysis of the temperature impact to the oxygen distribution in the biological tissue. Journal of Applied Mathematics and Computational Mechanics, 19, 17-28.
- [4] Korczak, A., & Jasiński, M. (2019). Modelling of biological tissue damage process with application of interval arithmetic. Journal of Theoretical and Applied Mechanics, 57, 249-261.
- [5] Jasiński, M. (2018). Modelling of thermal damage process in soft tissue subjected to laser irradiation. Journal of Applied Mathematics and Computational Mechanics, 17, 29-41.
- [6] Paruch, M. (2020). Mathematical modeling of breast tumor destruction using fast heating during radiofrequency ablation. Materials, 13, 136.
- [7] Mochnacki, B., & Ciesielski, M. (2016). Sensitivity of transient temperature field in domain of forearm insulated by protective clothing with respect to perturbations of external boundary heat flux. Bulletin of the Polish Academy of Sciences – Technical Sciences, 64, 591-598.
- [8] Dombrovsky, L.A. (2012). The use of transport approximation and diffusion-based models inradiative transfer calculations. Computational Thermal Sciences, 4(4), 297-315.
- [9] Dombrovsky, L.A., Randrianalisoa, J.H., Lipinski, W., & Timchenko, V. (2013). Simplified approaches to radiative transfer simulations in laser induced hyperthermia of superficial tumors. Computational Thermal Sciences, 5(6), 521-530.
- [10] Narasimhan, A., & Sadasivam, S. (2013). Non-Fourier bio heat transfer modelling of thermal damage during retinal laser irradiation. International Journal of Heat and Mass Transfer, 60, 591-597.
- [11] McGuire, B.J., & Secomb, T.W. (2001). A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand. Journal of Applied Physiology, 91, 2255-2265.
- [12] Fry, B.C., Roy, T.K., & Secomb, T.W. (2013). Capillary recruitment in a theoretical model for blood flow regulation in heterogeneous microvessel networks. Physiological Reports, 1(3), e00050.
- [13] Goldman, D. (2008). Theoretical models of microvascular oxygen transport to tissue. Microcirculation, 15, 795-811.
- [14] Popel, A.S. (1989). Theory of oxygen transport to tissue. Critical Reviews in Biomedical Engineering, 17, 257-321.
- [15] He, Y., Shirazaki, M., Liu, H., Himeno, R., & Sun, Z. (2006). A numerical coupling model to analyze the blood flow, temperature, and oxygen transport in human breast tumor under laser irradiation. Computers in Biology and Medicine, 36, 1289-1378.
- [16] McGuire, B.J., & Secomb, T.W. (2003). Estimation of capillary density in human skeletal muscle based on maximal oxygen consumption rates. American Journal of Physiology-Heart and Circulatory Physiology, 285, H2382-H2391.
- [17] Whiteley, J.P., Gavaghan, D.J., & Hahn, C.E.W. (2002). Mathematical modelling of oxygen transport to tissue. Journal of Mathematical Biology, 44, 503-522.
- [18] Zhu, T.C., Liu, B., & Penjweini, R. (2015). Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model. Journal of Biomedical Optics, 20, 038001.
- [19] Brebia, C.A., & Dominquez, J. (1992). Boundary Elements, An Introductory Course (Computational Mechanics Publications). London: McGraw-Hill Book Company.
- [20] Mochnacki, B., & Piasecka-Belkhayat, A. (2013). Numerical modeling of skin tissue heating using the interval finite difference method. Molecular & Cellular Biomechanics, 10, 233-244.
- [21] Majchrzak, E., & Mochnacki, B. (2016). Dual-phase lag equation. Stability conditions of a numerical algorithm based on the explicit scheme of the finite difference method. Journal of Applied Mathematics and Computational Mechanics, 15, 89-96.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdf247c9-d820-4bea-ab3d-477298c5ed73