PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected Properties of High Entropy Alloys Based on the AlFeMnNbNiTi System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to study the impact of various fabrication methods used to prepare high entropy alloys based on the AlFeMnNbNiTi system. Chemical composition was customized to ensure a solid solution structure with precipitation of the Laves phase. The three manufactured alloys were prepared by melting, but with the use of various input materials and different furnaces in protective atmospheres. After the melting process, heat treatment was carried out. Structures of obtained materials were analyzed by means of a Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) mapping. Mechanical properties were represented by Vickers hardness. In this paper, impact of the use of low purity input materials is shown, as well as differences in structure resulting from the utilization of different melting furnaces.
Słowa kluczowe
Rocznik
Strony
71--80
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network - Krakow Institute of Technology, ul. Zakopiańska 73, 30-418 Kraków, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • Grudzień-Rakoczy, M., Ł. Rakoczy, R. Cygan, F. Kromka, Z. Pirowski, and O. Milkovič. 2020. Fabrication and characterization of the newly developed superalloys based on Inconel 740. Materials 13 (10): 2362.
  • Guo, S., and C. T. Liu. 2011. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International 21 (6): 433–46.
  • He, F., Z. Wang, Q. Wu, J. Li, J. Wang, and C. T. Liu. 2017. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scripta Materialia 126: 15–19.
  • Huhn, W. P., and M. Widom. 2013. Prediction of A2 to B2 phase transition in the high entropy alloy MoNbTaW. JOM 65: 1772–79.
  • Kresse, G., and J. Hafner. 1993. Ab initio molecular dynamics for liquid metals. Physical Review B 47: RC558–RC61.
  • Lin, C.-M., H.-L. Tsai, and H.-Y. Bor. 2010. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy. Intermetallics 18 (6): 1244–50.
  • Otto, F., Y. Yang, H. Bei, and E. P. George. 2013. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia 61: 2628–38.
  • Qiao, J. W., Y. Zhang, and P. K. Liaw. 2008. Tailoring microstructures and mechanical properties of Zr-based bulk metallic glass matrix composites by the Bridgman solidification. Advanced Engineering Materials 10 (11): 1039–42.
  • Raabe, D., C. C. Tasan, H. Springer, and M. Bausch. 2015. From High-Entropy Alloys to High-Entropy Steels. Steel Research International 86 (10): 1127–38.
  • Rakoczy, Ł, M. Grudzień-Rakoczy, and R. Cygan. 2019. The Influence of Shell Mold Composition on the As-cast Macro- and Micro-structure of Thin-Walled IN713C Superalloy Castings. Journal of Materials Engineering and Performance 28: 3974–85.
  • Ren, B., Z. X. Liu, B. Cai, M. X. Wang, and L. Shi. 2012. Aging behavior of a CuCr2Fe2NiMn high-entropy alloy. Materials & Design 33: 121–26.
  • Senkov, O. N., G. B. Wilks, J. M. Scott, and D. B. Miracle. 2011. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19 (5): 698–706.
  • Shun, T.-T., C. H. Hung, and C.-F. Lee. 2010. The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 ◦C. Journal of Alloys and Compounds 495 (1): 55–58.
  • Tong, C. J., Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, and S. Y. Chang. 2005. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A 36: 881–93.
  • Varalakshmi, S., M. Kamaraj, and B. S. Murty. 2008. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. Journal of Alloys and Compounds 460 (1–2): 253–57.
  • Wang, F. J., Y. Zhang, and G. L. Chen. 2009. Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Journal of Engineering Materials and Technology 131: 034501.
  • Yeh, J. W. 2013. Alloy design strategies and future trends in high-entropy alloys. JOM 65: 1759–71.
  • Yeh, A. C., Y. J. Chang, C. W. Tsai, Y. C. Wang, J. W. Yeh, and C. M. Kuo. 2014. On the solidification and phase stability of a Co-Cr-Fe-Ni-Ti high-entropy alloy. Metallurgical and Materials Transactions A 45: 184–90.
  • Zhang, H., Y. Z. He, Y. Pan, and H. S. Jiao. 2011. Microstructure and properties of 6FeCoNiCrAlTiSi high-entropy alloy coating prepared by laser cladding. Applied Surface Science 257 (6): 2259–63.
  • Zhang, Y., T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu. 2014. Microstructures and properties of high-entropy alloys. Progress in Materials Science 61: 1–93.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fdf22b6b-a24b-4941-bf73-f2e1c04aa8ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.